Ratkaise yhtälöt missä. Yksinkertaisten lineaaristen yhtälöiden ratkaiseminen

Lineaariset yhtälöt. Ratkaisu, esimerkkejä.

Huomio!
On olemassa ylimääräisiä
materiaali erityisosastossa 555.
Niille, jotka vahvasti "ei kovin..."
Ja niille, jotka "erittäin...")

Lineaariset yhtälöt.

Lineaariset yhtälöt eivät ole koulumatematiikan vaikein aihe. Mutta siellä on joitain temppuja, jotka voivat hämmentää jopa koulutetun opiskelijan. Selvitetäänkö se?)

Lineaarinen yhtälö määritellään yleensä yhtälöksi, jonka muoto on:

kirves + b = 0 missä a ja b- mitkä tahansa numerot.

2x + 7 = 0. Tässä a=2, b = 7

0,1x - 2,3 = 0 Tässä a = 0,1, b = -2,3

12x + 1/2 = 0 Tässä a=12, b = 1/2

Ei mitään monimutkaista, eikö? Varsinkin jos et huomaa sanoja: "missä a ja b ovat mitä tahansa lukuja"... Ja jos huomaat, mutta ajattelet sitä huolimattomasti?) Loppujen lopuksi, jos a=0, b = 0(kaikki numerot ovat mahdollisia?), niin saadaan hauska lauseke:

Mutta ei siinä vielä kaikki! Jos sanotaan, a=0, a b = 5, siitä tulee jotain aivan absurdia:

Mikä rasittaa ja heikentää luottamusta matematiikkaan, kyllä ​​...) Varsinkin kokeissa. Mutta näistä outoista ilmauksista sinun on löydettävä myös X! Jota ei ole ollenkaan olemassa. Ja yllättävää kyllä, tämä X on erittäin helppo löytää. Opimme kuinka se tehdään. Tällä oppitunnilla.

Kuinka tunnistaa lineaarinen yhtälö ulkonäöltään? Riippuu mitä ulkomuoto.) Temppu on siinä, että lineaarisia yhtälöitä ei kutsuta vain muodon yhtälöiksi kirves + b = 0 , mutta myös kaikki yhtälöt, jotka on pelkistetty tähän muotoon muunnoksilla ja yksinkertaistuksilla. Ja kuka tietää, vähennetäänkö sitä vai ei?)

Lineaarinen yhtälö voidaan joissain tapauksissa tunnistaa selvästi. Sanotaan, että jos meillä on yhtälö, jossa on vain tuntemattomia ensimmäisessä asteessa, kyllä ​​numerot. Ja yhtälö ei murtoluvut jaettuna tuntematon , on tärkeää! Ja jakamalla määrä, tai murtoluku - siinä se! Esimerkiksi:

Tämä on lineaarinen yhtälö. Tässä on murtolukuja, mutta neliössä, kuutiossa jne. ei ole x:iä, eikä nimittäjissä ole x:iä, ts. Ei jako x:llä. Ja tässä on yhtälö

ei voida kutsua lineaariksi. Tässä x:t ovat kaikki ensimmäisessä asteessa, mutta siellä on jakaminen lausekkeella x:llä. Yksinkertaistusten ja muunnosten jälkeen voit saada lineaarisen yhtälön ja toisen asteen ja mitä tahansa haluat.

Osoittautuu, että on mahdotonta löytää lineaarista yhtälöä jossain monimutkaisessa esimerkissä, ennen kuin melkein ratkaiset sen. Se on järkyttävää. Mutta tehtävissä he eivät yleensä kysy yhtälön muotoa, eikö niin? Tehtävissä yhtälöt ovat järjestyksessä päättää. Tämä tekee minut onnelliseksi.)

Lineaaristen yhtälöiden ratkaisu. Esimerkkejä.

Lineaaristen yhtälöiden koko ratkaisu koostuu identtisistä yhtälöiden muunnoksista. Muuten, nämä muunnokset (jopa kaksi!) ovat ratkaisujen taustalla kaikki matematiikan yhtälöt. Toisin sanoen päätös minkä tahansa Yhtälö alkaa samoilla muunnoksilla. Lineaaristen yhtälöiden tapauksessa se (ratkaisu) näiden muunnosten kohdalla päättyy täysimittaiseen vastaukseen. On järkevää seurata linkkiä, eikö?) Lisäksi on myös esimerkkejä lineaaristen yhtälöiden ratkaisemisesta.

Aloitetaan yksinkertaisimmalla esimerkillä. Ilman mitään sudenkuoppia. Oletetaan, että meidän on ratkaistava seuraava yhtälö.

x - 3 = 2 - 4x

Tämä on lineaarinen yhtälö. X:t ovat kaikki ensimmäisellä potenssilla, X:llä ei ole jakoa. Mutta itse asiassa emme välitä, mikä yhtälö on. Meidän on ratkaistava se. Kaava tässä on yksinkertainen. Kerää kaikki, jossa on x:t yhtälön vasemmalla puolella, kaikki ilman x:iä (numeroita) oikealta.

Tätä varten sinun on siirrettävä - 4x vasemmalle puolelle, tietysti merkin vaihdolla, mutta - 3 - oikealle. Tämä on muuten ensimmäinen identtinen yhtälöiden muunnos. Yllättynyt? Joten he eivät seuranneet linkkiä, mutta turhaan ...) Saamme:

x + 4x = 2 + 3

Annamme samanlaisia, harkitsemme:

Mitä tarvitsemme ollaksemme täysin onnellisia? Kyllä, niin että vasemmalla on puhdas X! Viisi on tiellä. Päästä eroon viidestä toinen identtinen yhtälöiden muunnos. Nimittäin jaamme molemmat yhtälön osat 5:llä. Saamme valmiin vastauksen:

Alkuperäinen esimerkki tietysti. Tämä on lämmittelyä varten.) Ei ole kovin selvää, miksi muistin tässä identtiset muunnokset? OK. Tartumme härkää sarvista.) Päätetään jotain vaikuttavampaa.

Tässä on esimerkiksi tämä yhtälö:

Mistä aloitamme? X:llä - vasemmalla, ilman X:llä - oikealla? Voisi olla niin. Pienet askeleet pitkällä tiellä. Ja voit heti, universaalilla ja tehokkaalla tavalla. Ellei tietenkään arsenaalissasi ole identtisiä yhtälöiden muunnoksia.

Esitän sinulle keskeisen kysymyksen: Mistä et pidä eniten tässä yhtälössä?

95 ihmistä 100:sta vastaa: murto-osia ! Vastaus on oikea. Joten päästään niistä eroon. Aloitamme siis heti toinen identtinen muunnos. Mitä tarvitaan kertomaan vasemmalla oleva murto-osa, jotta nimittäjä pienenee kokonaan? Aivan oikein, 3. Ja oikealla? Mutta matematiikan avulla voimme kertoa molemmat puolet sama numero. Miten pääsemme ulos? Kerrotaan molemmat puolet 12:lla! Nuo. yhteiseksi nimittäjäksi. Sitten kolme pienenee ja neljä. Älä unohda, että sinun on kerrottava jokainen osa täysin. Ensimmäinen vaihe näyttää tältä:

Hakasulkeiden laajentaminen:

Merkintä! Osoittaja (x+2) Otin suluissa! Tämä johtuu siitä, että murtolukuja kerrottaessa osoittaja kerrotaan kokonaisuudella, kokonaan! Ja nyt voit pienentää murtolukuja ja vähentää:

Loput sulkeet avataan:

Ei esimerkki, mutta silkkaa iloa!) Nyt muistamme loitsun alemmilla luokilla: x:llä - vasemmalle, ilman x:tä - oikealle! Ja käytä tätä muutosta:

Tässä muutamia kuten:

Ja jaamme molemmat osat 25:llä, ts. käytä toista muutosta uudelleen:

Siinä kaikki. Vastaus: X=0,16

Huomaa: saadaksemme alkuperäisen hämmentävän yhtälön miellyttävään muotoon käytimme kahta (vain kahta!) identtisiä muunnoksia- käännös vasen-oikea etumerkin muutoksella ja yhtälön kerto-jakalla samalla luvulla. Tämä on universaali tapa! Työskentelemme tällä tavalla minkä tahansa yhtälöt! Ehdottomasti mikä tahansa. Siksi toistan näitä identtisiä muunnoksia koko ajan.)

Kuten näet, lineaaristen yhtälöiden ratkaisemisen periaate on yksinkertainen. Otamme yhtälön ja yksinkertaistamme sitä identtisten muunnosten avulla, kunnes saamme vastauksen. Tärkeimmät ongelmat ovat laskelmissa, eivät ratkaisun periaatteessa.

Mutta... Alkeisimpien lineaaristen yhtälöiden ratkaisuprosessissa on sellaisia ​​yllätyksiä, että ne voivat ajaa vahvaan umpikujaan...) Onneksi tällaisia ​​yllätyksiä voi olla vain kaksi. Kutsutaanpa niitä erikoistapauksiksi.

Erikoistapaukset lineaariyhtälöiden ratkaisemisessa.

Yllätys ensin.

Oletetaan, että törmäät perusyhtälöön, kuten:

2x+3=5x+5 - 3x -2

Hieman tylsistyneenä siirrymme X:llä vasemmalle, ilman X:llä - oikealle ... Etumerkin vaihdolla kaikki on leuka-chinaaria ... Saamme:

2x-5x+3x=5-2-3

Me uskomme, ja ... voi! Saamme:

Tämä tasa-arvo ei sinänsä ole moitittavaa. Nolla on todella nolla. Mutta X on poissa! Ja meidän on kirjoitettava vastaukseen, mikä x on yhtä suuri. Muuten ratkaisua ei lasketa, kyllä...) Umpikuja?

Rauhoittaa! Tällaisissa epäilyttävissä tapauksissa yleisimmät säännöt pelastavat. Kuinka ratkaista yhtälöt? Mitä yhtälön ratkaiseminen tarkoittaa? Tämä tarkoittaa, Etsi kaikki x:n arvot, jotka alkuperäiseen yhtälöön korvattuna antavat meille oikean yhtälön.

Mutta meillä on oikea tasa-arvo jo tapahtui! 0=0, missä oikein?! On vielä selvitettävä, millä x:llä tämä saadaan. Millä x:n arvoilla voidaan korvata alkukirjain yhtälö, jos nämä x:t vieläkin kutistuu nollaan?Älä viitsi?)

Joo!!! X:t voidaan korvata minkä tahansa! Mitä haluat. Vähintään 5, vähintään 0,05, vähintään -220. Ne kutistuvat silti. Jos et usko minua, voit tarkistaa sen.) Korvaa mitkä tahansa x-arvot alkukirjain yhtälö ja laske. Koko ajan saadaan puhdas totuus: 0=0, 2=2, -7.1=-7.1 ja niin edelleen.

Tässä on vastauksesi: x on mikä tahansa luku.

Vastaus voidaan kirjoittaa erilaisilla matemaattisilla symboleilla, olemus ei muutu. Tämä on täysin oikea ja täydellinen vastaus.

Yllätys kakkosena.

Otetaan sama alkeislineaarinen yhtälö ja muutetaan vain yksi luku siinä. Tästä päätämme:

2x+1=5x+5 - 3x -2

Samojen identtisten muutosten jälkeen saamme jotain kiehtovaa:

Kuten tämä. Ratkaisi lineaarisen yhtälön, sai kummallisen yhtälön. Matemaattisesti sanottuna meillä on väärä tasa-arvo. Ja puhuminen selkeää kieltä, Tämä ei ole totta. Rave. Mutta tästä huolimatta tämä hölynpöly on varsin hyvä syy yhtälön oikeaan ratkaisuun.)

Jälleen ajattelemme alkaen yleiset säännöt. Mitä x, kun se korvataan alkuperäiseen yhtälöön, antaa meille oikea tasa-arvo? Kyllä, ei yhtään! Sellaisia ​​x:iä ei ole olemassa. Mitä tahansa korvaatkin, kaikki vähenee, hölynpölyä jää.)

Tässä on vastauksesi: ei ole ratkaisuja.

Tämä on myös täysin pätevä vastaus. Matematiikassa tällaisia ​​vastauksia esiintyy usein.

Kuten tämä. Nyt toivon, että X:iden menetys minkä tahansa (ei vain lineaarisen) yhtälön ratkaisemisessa ei häiritse sinua ollenkaan. Asia on tuttu.)

Nyt kun olemme käsitelleet kaikki lineaaristen yhtälöiden sudenkuopat, on järkevää ratkaista ne.

Jos pidät tästä sivustosta...

Muuten, minulla on sinulle pari muuta mielenkiintoista sivustoa.)

Voit harjoitella esimerkkien ratkaisemista ja selvittää tasosi. Testaus välittömällä vahvistuksella. Oppiminen - mielenkiinnolla!)

voit tutustua funktioihin ja johdannaisiin.

Tässä videossa analysoimme koko sarjan lineaarisia yhtälöitä, jotka ratkaistaan ​​samalla algoritmilla - siksi niitä kutsutaan yksinkertaisimmiksi.

Aluksi määritellään: mikä on lineaarinen yhtälö ja mitä niistä pitäisi kutsua yksinkertaisimmaksi?

Lineaarinen yhtälö on sellainen, jossa on vain yksi muuttuja ja vain ensimmäisessä asteessa.

Yksinkertaisin yhtälö tarkoittaa rakennetta:

Kaikki muut lineaariset yhtälöt pelkistetään yksinkertaisimpiin käyttämällä algoritmia:

  1. Avoimet sulut, jos sellaisia ​​on;
  2. Siirrä muuttujan sisältävät termit yhtäläisyysmerkin toiselle puolelle ja termit ilman muuttujaa toiselle puolelle;
  3. Tuo samat termit yhtäläisyysmerkin vasemmalle ja oikealle puolelle;
  4. Jaa saatu yhtälö muuttujan $x$ kertoimella.

Tämä algoritmi ei tietenkään aina auta. Tosiasia on, että joskus kaikkien näiden koneistusten jälkeen muuttujan $x$ kerroin osoittautuu nollaksi. Tässä tapauksessa kaksi vaihtoehtoa on mahdollista:

  1. Yhtälöllä ei ole lainkaan ratkaisuja. Esimerkiksi kun saat jotain $0\cdot x=8$, ts. vasemmalla on nolla ja oikealla on nollasta poikkeava luku. Alla olevassa videossa tarkastellaan useita syitä, miksi tämä tilanne on mahdollinen.
  2. Ratkaisu on kaikki numerot. Ainoa tapaus, jolloin tämä on mahdollista, on, kun yhtälö on pelkistetty konstruktioon $0\cdot x=0$. On aivan loogista, että riippumatta siitä, mitä $x$ korvaamme, siitä huolimatta tulee esiin "nolla on yhtä kuin nolla", ts. oikea numeerinen yhtäläisyys.

Ja nyt katsotaan kuinka se kaikki toimii todellisten ongelmien esimerkissä.

Esimerkkejä yhtälöiden ratkaisemisesta

Nykyään käsittelemme lineaarisia yhtälöitä, ja vain yksinkertaisimpia. Yleensä lineaarinen yhtälö tarkoittaa mitä tahansa yhtälöä, joka sisältää täsmälleen yhden muuttujan, ja se menee vain ensimmäiseen asteeseen.

Tällaiset rakenteet ratkaistaan ​​suunnilleen samalla tavalla:

  1. Ensinnäkin sinun on avattava mahdolliset sulut (kuten viimeisessä esimerkissämme);
  2. Tuo sitten samanlainen
  3. Lopuksi eristetään muuttuja, ts. kaikki muuttujaan liittyvä - sen sisältämät termit - siirtyy toiselle puolelle ja kaikki, mikä jää ilman sitä, siirtyy toiselle puolelle.

Sitten sinun on pääsääntöisesti tuotava samanlainen tuloksena olevan tasa-arvon kummallekin puolelle, ja sen jälkeen jää vain jakaa kertoimella kohdassa "x", ja saamme lopullisen vastauksen.

Teoriassa tämä näyttää mukavalta ja yksinkertaiselta, mutta käytännössä jopa kokeneet lukiolaiset voivat tehdä loukkaavia virheitä melko yksinkertaisissa lineaarisissa yhtälöissä. Yleensä virheitä tehdään joko sulkuja avattaessa tai "plussia" ja "miinuksia" laskettaessa.

Lisäksi käy niin, että lineaarisella yhtälöllä ei ole ratkaisuja ollenkaan tai niin, että ratkaisu on koko lukuviiva, ts. mikä tahansa numero. Analysoimme näitä hienouksia tämän päivän oppitunnilla. Mutta aloitamme, kuten jo ymmärsit, yksinkertaisimmista tehtävistä.

Kaavio yksinkertaisten lineaaristen yhtälöiden ratkaisemiseksi

Aluksi haluan kirjoittaa vielä kerran koko kaavion yksinkertaisimpien lineaaristen yhtälöiden ratkaisemiseksi:

  1. Laajenna mahdolliset sulkeet.
  2. Eristä muuttujat, ts. kaikki, mikä sisältää "x":n, siirretään toiselle puolelle ja ilman x:tä - toiselle.
  3. Esittelemme samanlaisia ​​termejä.
  4. Jaamme kaiken kertoimella "x".

Tämä järjestelmä ei tietenkään aina toimi, sillä on tiettyjä hienouksia ja temppuja, ja nyt opimme tuntemaan ne.

Tosiesimerkkien ratkaiseminen yksinkertaisista lineaarisista yhtälöistä

Tehtävä 1

Ensimmäisessä vaiheessa meidän on avattava kiinnikkeet. Mutta ne eivät ole tässä esimerkissä, joten ohitamme tämän vaiheen. Toisessa vaiheessa meidän on eristettävä muuttujat. Huomaa: puhumme vain yksittäisistä ehdoista. Kirjoitetaan:

Annamme samanlaiset ehdot vasemmalla ja oikealla, mutta tämä on jo tehty täällä. Siksi siirrymme neljänteen vaiheeseen: jaa kertoimella:

\[\frac(6x)(6)=-\frac(72)(6)\]

Tässä saimme vastauksen.

Tehtävä #2

Tässä tehtävässä voimme tarkkailla sulkuja, joten laajennetaan niitä:

Sekä vasemmalla että oikealla näemme suunnilleen saman konstruktion, mutta toimitaan algoritmin mukaan, ts. Sequester muuttujat:

Tässä muutamia kuten:

Millä juurilla tämä toimii? Vastaus: mihin tahansa. Siksi voimme kirjoittaa, että $x$ on mikä tahansa luku.

Tehtävä #3

Kolmas lineaarinen yhtälö on jo mielenkiintoisempi:

\[\vasen(6-x \oikea)+\vasen(12+x \oikea)-\vasen(3-2x \oikea)=15\]

Tässä on useita suluita, mutta niitä ei kerrota millään, niiden edessä on vain erilaisia ​​merkkejä. Puretaan ne:

Suoritamme jo tuntemamme toisen vaiheen:

\[-x+x+2x=15-6-12+3\]

Lasketaan:

Me toteutamme viimeinen askel- jaa kaikki kertoimella "x":

\[\frac(2x)(x)=\frac(0)(2)\]

Muistettavaa, kun ratkaiset lineaarisia yhtälöitä

Jos jätämme huomiotta liian yksinkertaiset tehtävät, haluaisin sanoa seuraavaa:

  • Kuten edellä sanoin, jokaisella lineaarisella yhtälöllä ei ole ratkaisua - joskus juuria ei yksinkertaisesti ole;
  • Vaikka juuret olisivat, nolla voi päästä niiden joukkoon - siinä ei ole mitään vikaa.

Nolla on sama luku kuin muut, sinun ei pitäisi jotenkin syrjiä sitä tai olettaa, että jos saat nollan, olet tehnyt jotain väärin.

Toinen ominaisuus liittyy sulkeiden laajentamiseen. Huomaa: kun niiden edessä on "miinus", poistamme sen, mutta suluissa muutamme merkit vastapäätä. Ja sitten voimme avata sen standardialgoritmien mukaan: saamme sen, mitä näimme yllä olevissa laskelmissa.

Tämän yksinkertaisen tosiasian ymmärtäminen auttaa sinua välttämään typeriä ja loukkaavia virheitä lukiossa, kun tällaisia ​​toimia pidetään itsestäänselvyytenä.

Monimutkaisten lineaaristen yhtälöiden ratkaiseminen

Jatketaan lisää monimutkaisia ​​yhtälöitä. Nyt rakenteet monimutkaistuvat ja eri muunnoksia suoritettaessa tulee näkyviin neliöfunktio. Sinun ei kuitenkaan pidä pelätä tätä, koska jos ratkaisemme kirjoittajan tarkoituksen mukaan lineaarisen yhtälön, niin muunnosprosessissa kaikki monomit, jotka sisältävät toisen asteen funktion, pelkistyvät välttämättä.

Esimerkki #1

On selvää, että ensimmäinen askel on avata sulut. Tehdään tämä erittäin huolellisesti:

Otetaan nyt yksityisyys:

\[-x+6((x)^(2))-6((x)^(2))+x=-12\]

Tässä muutamia kuten:

Ilmeisesti tällä yhtälöllä ei ole ratkaisuja, joten vastauksessa kirjoitamme seuraavasti:

\[\lajike \]

tai ei juuria.

Esimerkki #2

Suoritamme samat vaiheet. Ensimmäinen askel:

Siirretään kaikki muuttujan kanssa vasemmalle ja ilman sitä - oikealle:

Tässä muutamia kuten:

Ilmeisesti tällä lineaarisella yhtälöllä ei ole ratkaisua, joten kirjoitamme sen näin:

\[\varnothing\],

tai ei juuria.

Ratkaisun vivahteet

Molemmat yhtälöt ovat täysin ratkaistu. Näiden kahden lausekkeen esimerkissä varmistimme jälleen kerran, että jopa yksinkertaisimmissa lineaarisissa yhtälöissä kaikki ei voi olla niin yksinkertaista: niitä voi olla joko yksi tai ei yhtään tai äärettömän monta. Meidän tapauksessamme tarkastelimme kahta yhtälöä, molemmissa ei yksinkertaisesti ole juuria.

Mutta haluaisin kiinnittää huomiosi toiseen tosiasiaan: kuinka työskennellä suluilla ja kuinka laajentaa niitä, jos niiden edessä on miinusmerkki. Harkitse tätä ilmaisua:

Ennen avaamista sinun on kerrottava kaikki "x":llä. Huomaa: kerro jokainen yksittäinen termi. Sisällä on kaksi termiä - vastaavasti kaksi termiä ja kerrotaan.

Ja vasta kun nämä näennäisesti alkeelliset, mutta erittäin tärkeät ja vaaralliset muutokset on saatu päätökseen, voidaan sulku avata siltä kannalta, että sen jälkeen on miinusmerkki. Kyllä, kyllä: vasta nyt, kun muunnokset on tehty, muistamme, että suluissa on miinusmerkki, mikä tarkoittaa, että kaikki alla oleva vain muuttaa merkkejä. Samaan aikaan itse kiinnikkeet katoavat ja mikä tärkeintä, myös etuosan "miinus" katoaa.

Teemme saman toisen yhtälön kanssa:

Ei ole sattumaa, että kiinnitän huomiota näihin pieniin, näennäisesti merkityksettömiin faktoihin. Koska yhtälöiden ratkaiseminen on aina alkeismuunnosten sarja, jossa kyvyttömyys tehdä selkeästi ja pätevästi yksinkertaisia ​​​​toimintoja johtaa siihen, että lukiolaiset tulevat luokseni ja oppivat ratkaisemaan tällaisia ​​​​yksinkertaisia ​​​​yhtälöitä uudelleen.

Tietysti tulee päivä, jolloin hioat nämä taidot automatismiin. Sinun ei enää tarvitse tehdä niin monia muunnoksia joka kerta, kirjoitat kaiken yhdelle riville. Mutta kun olet vain oppimassa, sinun on kirjoitettava jokainen toiminto erikseen.

Vielä monimutkaisempien lineaaristen yhtälöiden ratkaiseminen

Sitä, mitä aiomme ratkaista nyt, voidaan tuskin kutsua yksinkertaisimmaksi tehtäväksi, mutta merkitys pysyy samana.

Tehtävä 1

\[\vasen(7x+1 \oikea)\vasen(3x-1 \oikea)-21((x)^(2))=3\]

Kerrotaan kaikki ensimmäisen osan elementit:

Tehdään retriitti:

Tässä muutamia kuten:

Tehdään viimeinen vaihe:

\[\frac(-4x)(4)=\frac(4)(-4)\]

Tässä on lopullinen vastauksemme. Ja huolimatta siitä, että ratkaisuprosessissa meillä oli neliöfunktion kertoimia, ne kuitenkin kumosivat toisensa, mikä tekee yhtälöstä täsmälleen lineaarisen, ei neliön.

Tehtävä #2

\[\vasen(1-4x \oikea)\vasen(1-3x \oikea)=6x\vasen(2x-1 \oikea)\]

Tehdään ensimmäinen vaihe huolellisesti: kerrotaan jokainen ensimmäisen sulussa oleva elementti jokaisella toisen elementillä. Yhteensä neljä uutta termiä tulisi saada muunnosten jälkeen:

Ja nyt suorita kertolasku huolellisesti jokaisessa termissä:

Siirretään termit "x":n kanssa vasemmalle ja ilman - oikealle:

\[-3x-4x+12((x)^(2))-12((x)^(2))+6x=-1\]

Tässä on samanlaisia ​​termejä:

Olemme saaneet lopullisen vastauksen.

Ratkaisun vivahteet

Tärkein huomautus näistä kahdesta yhtälöstä on seuraava: heti kun alamme kertoa hakasulkeet, joissa on sitä suurempi termi, niin tämä tehdään seuraava sääntö: otamme ensimmäisen termin ensimmäisestä ja kerromme jokaisella elementillä toisesta; sitten otetaan toinen elementti ensimmäisestä ja kerrotaan samalla tavalla jokaisella toisesta elementistä. Tuloksena saamme neljä termiä.

Algebrallisella summalla

Viimeisellä esimerkillä haluaisin muistuttaa oppilaita, mikä on algebrallinen summa. Klassisessa matematiikassa $1-7$ tarkoitamme yksinkertaista konstruktiota: vähennämme seitsemän yhdestä. Algebrassa tarkoitamme tällä seuraavaa: numeroon "yksi" lisäämme toisen luvun, nimittäin "miinus seitsemän". Tämä algebrallinen summa eroaa tavallisesta aritmeettisesta summasta.

Heti kun suoritat kaikkia muunnoksia, jokaista yhteenlaskua ja kertolaskua, alat nähdä edellä kuvatun kaltaisia ​​rakenteita, sinulla ei yksinkertaisesti ole ongelmia algebrassa työskennellessäsi polynomien ja yhtälöiden kanssa.

Lopuksi katsotaan vielä muutama esimerkki, jotka ovat vieläkin monimutkaisempia kuin juuri tarkastelimme, ja niiden ratkaisemiseksi meidän on laajennettava hieman standardialgoritmiamme.

Yhtälöiden ratkaiseminen murtoluvulla

Tällaisten tehtävien ratkaisemiseksi algoritmiimme on lisättävä vielä yksi vaihe. Mutta ensin muistutan algoritmimme:

  1. Avaa kiinnikkeet.
  2. Erilliset muuttujat.
  3. Tuo samanlainen.
  4. Jaa kertoimella.

Valitettavasti tämä upea algoritmi kaikesta tehokkuudestaan ​​huolimatta ei ole täysin sopiva, kun meillä on edessämme murto-osia. Ja mitä näemme alla, molemmissa yhtälöissä on murto-osa vasemmalla ja oikealla.

Kuinka toimia tässä tapauksessa? Kyllä, se on hyvin yksinkertaista! Tätä varten sinun on lisättävä algoritmiin vielä yksi vaihe, joka voidaan suorittaa sekä ennen ensimmäistä toimintoa että sen jälkeen, nimittäin päästä eroon murtoluvuista. Algoritmi tulee siis olemaan seuraava:

  1. Päästä eroon murtoluvuista.
  2. Avaa kiinnikkeet.
  3. Erilliset muuttujat.
  4. Tuo samanlainen.
  5. Jaa kertoimella.

Mitä tarkoittaa "päästä eroon murtoluvuista"? Ja miksi tämä on mahdollista tehdä sekä ensimmäisen vakiovaiheen jälkeen että ennen sitä? Itse asiassa meidän tapauksessamme kaikki murtoluvut ovat numeerisia nimittäjän suhteen, ts. kaikkialla nimittäjä on vain numero. Siksi, jos kerromme yhtälön molemmat osat tällä luvulla, pääsemme eroon murtoluvuista.

Esimerkki #1

\[\frac(\vasen(2x+1 \oikea)\vasen(2x-3 \oikea))(4)=((x)^(2))-1\]

Päätetään eroon tämän yhtälön murtoluvuista:

\[\frac(\left(2x+1 \right)\left(2x-3 \right)\cdot 4)(4)=\left(((x)^(2))-1 \right)\cdot neljä\]

Huomaa: kaikki kerrotaan "neljällä" kerran, ts. se, että sinulla on kaksi hakasulkua, ei tarkoita, että sinun täytyy kertoa niistä jokainen "neljällä". Kirjoitetaan:

\[\vasen(2x+1 \oikea)\vasen(2x-3 \oikea)=\vasen(((x)^(2))-1 \oikea)\cdot 4\]

Nyt avataan:

Suoritamme muuttujan eristämisen:

Suoritamme vastaavien ehtojen vähentämisen:

\[-4x=-1\left| :\vasen(-4 \oikea) \oikea.\]

\[\frac(-4x)(-4)=\frac(-1)(-4)\]

Olemme saaneet lopullisen ratkaisun, siirrymme toiseen yhtälöön.

Esimerkki #2

\[\frac(\vasen(1-x \oikea)\vasen(1+5x \oikea))(5)+((x)^(2))=1\]

Täällä teemme kaikki samat toiminnot:

\[\frac(\left(1-x \right)\left(1+5x \right)\cdot 5)(5)+((x)^(2))\cdot 5=5\]

\[\frac(4x)(4)=\frac(4)(4)\]

Ongelma ratkaistu.

Se on itse asiassa kaikki, mitä halusin kertoa tänään.

Avainkohdat

Tärkeimmät havainnot ovat seuraavat:

  • Tunne lineaaristen yhtälöiden ratkaisualgoritmi.
  • Kyky avata kiinnikkeitä.
  • Älä huoli, jos sinulla on toisen asteen funktioita jossain, todennäköisimmin lisämuunnosprosessissa niitä pienennetään.
  • Lineaaristen yhtälöiden juuret, jopa yksinkertaisimmat, ovat kolmenlaisia: yksi juuri, koko lukuviiva on juuri, juuria ei ole ollenkaan.

Toivon, että tämä oppitunti auttaa sinua hallitsemaan yksinkertaisen, mutta erittäin tärkeän aiheen kaiken matematiikan ymmärtämiseksi paremmin. Jos jokin on epäselvää, mene sivustolle ja ratkaise siellä esitetyt esimerkit. Pysy kuulolla, sinua odottaa paljon muuta mielenkiintoista!


Analysoimme kahden tyyppisiä yhtälöjärjestelmiä:

1. Järjestelmän ratkaisu korvausmenetelmällä.
2. Järjestelmän ratkaisu järjestelmän yhtälöiden termittäin yhteenlaskemalla (vähennyksellä).

Yhtälöjärjestelmän ratkaisemiseksi korvausmenetelmä sinun on noudatettava yksinkertaista algoritmia:
1. ilmaisemme. Mistä tahansa yhtälöstä ilmaisemme yhden muuttujan.
2. Korvaava. Korvaamme saadun arvon toisella yhtälöllä ilmaistun muuttujan sijaan.
3. Ratkaisemme tuloksena olevan yhtälön yhdellä muuttujalla. Löydämme ratkaisun järjestelmään.

Ratkaista järjestelmä termi kerrallaan lisäämällä (vähennyslasku) tarve:
1. Valitse muuttuja, jolle teemme samat kertoimet.
2. Lisäämme tai vähennämme yhtälöt, jolloin saamme yhtälön, jossa on yksi muuttuja.
3. Ratkaisemme tuloksena olevan lineaarisen yhtälön. Löydämme ratkaisun järjestelmään.

Järjestelmän ratkaisu on funktion kuvaajien leikkauspisteet.

Tarkastellaan yksityiskohtaisesti järjestelmien ratkaisua esimerkkien avulla.

Esimerkki 1:

Ratkaistaan ​​korvausmenetelmällä

Yhtälöjärjestelmän ratkaiseminen korvausmenetelmällä

2x+5y=1 (1 yhtälö)
x-10y = 3 (2. yhtälö)

1. Express
Voidaan nähdä, että toisessa yhtälössä on muuttuja x, jonka kerroin on 1, joten käy ilmi, että muuttuja x on helpoin ilmaista toisesta yhtälöstä.
x=3+10v

2. Ilmaisemisen jälkeen korvaamme ensimmäisessä yhtälössä muuttujan x sijasta 3 + 10y.
2(3+10v)+5v=1

3. Ratkaisemme tuloksena olevan yhtälön yhdellä muuttujalla.
2(3+10v)+5v=1 (avoimet sulut)
6+20v+5v=1
25v = 1-6
25v = -5 |: (25)
y = -5:25
y = -0,2

Yhtälöjärjestelmän ratkaisu on graafien leikkauspisteet, joten meidän on löydettävä x ja y, koska leikkauspiste koostuu x:stä ja y:stä. Etsitään x, ensimmäisessä kappaleessa, jossa ilmaisimme, korvaamme y:n.
x=3+10v
x=3+10*(-0,2)=1

On tapana kirjoittaa ensin pisteet, kirjoitetaan muuttuja x ja toiseksi muuttuja y.
Vastaus: (1; -0,2)

Esimerkki 2:

Ratkaistaan ​​termi kerrallaan yhteenlaskemalla (vähennyslasku).

Yhtälöjärjestelmän ratkaiseminen summausmenetelmällä

3x-2y=1 (1 yhtälö)
2x-3y = -10 (2. yhtälö)

1. Valitse muuttuja, oletetaan, että valitsemme x. Ensimmäisessä yhtälössä muuttujan x kerroin on 3, toisessa - 2. Meidän on tehtävä kertoimet samat, tätä varten meillä on oikeus kertoa yhtälöt tai jakaa millä tahansa luvulla. Kerromme ensimmäisen yhtälön 2:lla ja toisen 3:lla ja saamme kokonaiskertoimen 6.

3x-2v=1 |*2
6x-4v = 2

2x-3v = -10 |*3
6x-9v=-30

2. Vähennä ensimmäisestä yhtälöstä toinen päästäksesi eroon muuttujasta x. Ratkaise lineaarinen yhtälö.
__6x-4y=2

5v=32 | :5
y = 6,4

3. Etsi x. Korvaamme löydetyn y:n missä tahansa yhtälössä, vaikkapa ensimmäisessä yhtälössä.
3x-2v=1
3x-2*6,4=1
3x-12,8 = 1
3x=1+12,8
3x=13,8 |:3
x = 4,6

Leikkauspiste on x=4,6; y = 6,4
Vastaus: (4.6; 6.4)

Haluatko valmistautua kokeisiin ilmaiseksi? Tutori verkossa on ilmainen. Ihan totta.

Sovellus

Kaikentyyppisten yhtälöiden ratkaisu verkossa sivustolle opiskelijoiden ja koululaisten opiskelumateriaalin yhdistämiseksi Yhtälöiden ratkaiseminen verkossa. Yhtälöt verkossa. On olemassa algebrallisia, parametrisia, transsendentaalisia, funktionaalisia, differentiaalisia ja muun tyyppisiä yhtälöitä. Joillakin yhtälöluokilla on analyyttisiä ratkaisuja, jotka ovat käteviä siinä mielessä, että ne eivät vain anna juuren tarkkaa arvoa, vaan mahdollistavat ratkaisun kirjoittamisen kaavan muodossa, joka voi sisältää parametreja. Analyyttisten lausekkeiden avulla ei voida vain laskea juuria, vaan analysoida niiden olemassaoloa ja lukumäärää parametrien arvoista riippuen, mikä on usein jopa tärkeämpää käytännön käytössä kuin tietyt arvot juuret. Yhtälöiden ratkaisu verkossa Yhtälöt verkossa. Yhtälön ratkaisun tehtävänä on löytää sellaiset argumenttien arvot, joille tämä yhtäläisyys saavutetaan. Argumenttien mahdollisille arvoille voidaan asettaa lisäehtoja (kokonaisluku, todellinen jne.). Yhtälöiden ratkaisu verkossa Yhtälöt verkossa. Voit ratkaista yhtälön verkossa välittömästi ja suurella tuloksen tarkkuudella. Annettujen funktioiden argumentteja (joita joskus kutsutaan "muuttujiksi") kutsutaan yhtälön tapauksessa "tuntemattomiksi". Tuntemattomien arvoja, joille tämä yhtäläisyys saavutetaan, kutsutaan annetun yhtälön ratkaisuiksi tai juuriksi. Juurien sanotaan täyttävän tietyn yhtälön. Yhtälön ratkaiseminen verkossa tarkoittaa kaikkien sen ratkaisujen (juurien) joukon löytämistä tai sen todistamista, ettei juuria ole. Yhtälöiden ratkaisu verkossa Yhtälöt verkossa. Ekvivalentteja tai ekvivalentteja kutsutaan yhtälöiksi, joiden juuret ovat samat. Vastaavina pidetään myös yhtälöitä, joilla ei ole juuria. Yhtälöiden ekvivalenssilla on symmetrian ominaisuus: jos yksi yhtälö on ekvivalentti toiselle, niin toinen yhtälö vastaa ensimmäistä. Yhtälöiden ekvivalenssilla on transitiivisuuden ominaisuus: jos yksi yhtälö on ekvivalentti toiselle ja toinen on ekvivalentti kolmannelle, niin ensimmäinen yhtälö vastaa kolmatta. Yhtälöiden ekvivalenssiominaisuus mahdollistaa muunnosten suorittamisen niillä, joihin niiden ratkaisumenetelmät perustuvat. Yhtälöiden ratkaisu verkossa Yhtälöt verkossa. Sivuston avulla voit ratkaista yhtälön verkossa. Yhtälöihin, joiden analyyttiset ratkaisut tunnetaan, ovat algebralliset yhtälöt, jotka eivät ole korkeampia kuin neljäs astetta: lineaarinen yhtälö, toisen asteen yhtälö, kuutioyhtälö ja neljännen asteen yhtälö. Korkeamman asteen algebrallisilla yhtälöillä ei yleensä ole analyyttistä ratkaisua, vaikka osa niistä voidaan pelkistää alemman asteen yhtälöiksi. Yhtälöitä, jotka sisältävät transsendenttisia toimintoja, kutsutaan transsendentaalisiksi. Joillekin niistä tunnetaan analyyttisiä ratkaisuja trigonometriset yhtälöt, nollasta lähtien trigonometriset funktiot hyvin tunnettu. Yleensä, kun analyyttistä ratkaisua ei löydy, käytetään numeerisia menetelmiä. Numeeriset menetelmät eivät anna tarkkaa ratkaisua, vaan sallivat vain kaventaa väliä, jossa juuri sijaitsee, tiettyyn ennalta määrättyyn arvoon. Yhtälöiden ratkaiseminen verkossa. Online-yhtälöt. Online-yhtälön sijasta esitellään kuinka sama lauseke muodostaa lineaarisen riippuvuuden eikä vain suoraa tangenttia pitkin, vaan myös graafin käännekohdassa. Tämä menetelmä on välttämätön aina aihetta tutkittaessa. Usein käy niin, että yhtälöiden ratkaisu lähestyy lopullista arvoa äärettömien lukujen ja kirjoitusvektoreiden avulla. Alkutiedot on tarkistettava, ja tämä on tehtävän ydin. Muussa tapauksessa paikallinen ehto muunnetaan kaavaksi. Tietyn funktion suoran käännöksen, jonka yhtälölaskin laskee ilman suurta viivettä suorituksessa, kompensoi avaruuden etuoikeus. Se kertoo opiskelijoiden suorituksista tieteellisessä ympäristössä. Kuitenkin, kuten kaikki edellä mainitut, se auttaa meitä etsintäprosessissa, ja kun ratkaiset yhtälön kokonaan, tallenna tuloksena saatu vastaus suoran segmentin päihin. Avaruuden suorat leikkaavat pisteessä, ja tätä pistettä kutsutaan viivojen leikkaamiseksi. Rivillä oleva väli on merkitty kuten aiemmin. Matematiikan tutkimuksen korkein virka julkaistaan. Argumentin arvon määrittäminen parametrisesti määritellyltä pinnalta ja yhtälön ratkaiseminen verkossa pystyy osoittamaan funktion tuottavan kutsun periaatteet. Möbius-nauha, tai kuten sitä kutsutaan äärettömäksi, näyttää kahdeksalta. Tämä on yksipuolinen pinta, ei kaksipuolinen. Kaikkien tunteman periaatteen mukaisesti hyväksymme objektiivisesti lineaariset yhtälöt perusnimitykseksi sellaisena kuin ne opiskelualalla ovat. Vain kaksi peräkkäin annettujen argumenttien arvoa voivat paljastaa vektorin suunnan. Oletetaan, että online-yhtälöiden erilainen ratkaisu on paljon enemmän kuin pelkkä sen ratkaiseminen, tarkoittaa invariantin täysimittaisen version saamista ulostulossa. Ilman integroitu lähestymistapa Opiskelijoiden on vaikea oppia tätä materiaalia. Kuten ennenkin, jokaisessa erikoistapauksessa kätevä ja älykäs online-yhtälölaskinmme auttaa kaikkia vaikealla hetkellä, koska sinun tarvitsee vain määrittää syöttöparametrit ja järjestelmä laskee vastauksen itse. Ennen kuin aloitamme tietojen syöttämisen, tarvitsemme syöttötyökalun, joka voidaan tehdä ilman suuria vaikeuksia. Kunkin vastauspistemäärän lukumäärä on neliöyhtälö, joka johtaa johtopäätöksiimme, mutta tämä ei ole niin helppoa, koska se on helppo todistaa päinvastainen. Teoriaa ei sen erityispiirteiden vuoksi tue käytännön tieto. Murtolukulaskimen näkeminen vastauksen julkaisuvaiheessa ei ole helppo tehtävä matematiikassa, koska vaihtoehto luvun kirjoittaminen joukkoon lisää funktion kasvua. Olisi kuitenkin väärin olla sanomatta opiskelijoiden koulutuksesta, joten ilmaisemme jokaisen sen verran kuin on tarpeen tehdä. Aiemmin löydetty kuutioyhtälö kuuluu oikeutetusti määritelmäalueeseen ja sisältää numeeristen arvojen avaruuden sekä symbolisia muuttujia. Oppittuaan tai opetettuaan lauseen opiskelijamme todistavat itsensä vain parempi puoli ja olemme iloisia heidän puolestaan. Toisin kuin kenttien leikkauspisteiden joukko, online-yhtälömme kuvataan liiketasolla kahden ja kolmen numeerisen yhdistetyn suoran kertolaskulla. Matematiikassa joukkoa ei ole yksiselitteisesti määritelty. Paras ratkaisu opiskelijoiden mielestä on loppuun asti tehty kirjallinen ilmaisu. Kuten sanottiin tieteellinen kieli, symbolisten ilmaisujen abstraktio ei sisälly asioiden tilaan, mutta yhtälöiden ratkaisu antaa yksiselitteisen tuloksen kaikissa tunnetut tapaukset. Opettajan istunnon kesto määräytyy tämän tarjouksen tarpeiden mukaan. Analyysi osoitti kaikkien laskentatekniikoiden tarpeen monilla alueilla, ja on täysin selvää, että yhtälölaskin on korvaamaton työkalu lahjakkaissa opiskelijan käsissä. Uskollinen lähestymistapa matematiikan opiskeluun määrittää eri suuntaisten näkemysten tärkeyden. Haluat nimetä yhden avainlauseista ja ratkaista yhtälön sellaisella tavalla, jonka vastauksesta riippuen sen soveltamiselle on edelleen tarvetta. Analyysi on tällä alalla saamassa vauhtia. Aloitetaan alusta ja johdetaan kaava. Kun funktion kasvun taso on murtunut, tangenttiviiva käännepisteessä johtaa väistämättä siihen, että yhtälön ratkaiseminen verkossa on yksi tärkeimmistä näkökohdista saman graafin rakentamisessa funktion argumentista. Amatöörilähestymistapaa on oikeus soveltaa, jos tämä ehto ei ole ristiriidassa opiskelijoiden havaintojen kanssa. Se on osatehtävä, joka asettaa matemaattisten ehtojen analyysin lineaarisina yhtälöinä olemassa olevaan objektimäärittelyn alueeseen, joka tuodaan taustalle. Poikkeama ortogonaalisuuden suunnassa kumoaa yksinäisen itseisarvon edun. Modulo, yhtälöiden ratkaiseminen verkossa antaa saman määrän ratkaisuja, jos avaat sulut ensin plusmerkillä ja sitten miinusmerkillä. Tässä tapauksessa ratkaisuja on kaksi kertaa enemmän, ja tulos on tarkempi. Vakaa ja oikea online-yhtälölaskin onnistuu saavuttamaan asetetun tavoitteen opettajan asettamassa tehtävässä. Näyttää mahdolliselta valita tarvittava menetelmä suurten tiedemiesten näkemysten merkittävien erojen vuoksi. Tuloksena oleva toisen asteen yhtälö kuvaa viivojen käyrää, ns. paraabelia, ja merkki määrittää sen kuperuuden neliökoordinaatistossa. Yhtälöstä saadaan sekä diskriminantti että itse juuret Vieta-lauseen mukaisesti. Lauseke on esitettävä oikeana tai vääränä murtolukuna ja käytettävä murtolaskuria ensimmäisessä vaiheessa. Tästä riippuen laaditaan suunnitelma jatkolaskuillemme. Teoreettinen matematiikka on hyödyllistä joka vaiheessa. Esitämme tuloksen ehdottomasti kuutioyhtälönä, koska piilotamme sen juuret tähän lausekkeeseen yksinkertaistaaksemme yliopisto-opiskelijan tehtävää. Kaikki menetelmät ovat hyviä, jos ne soveltuvat pinnalliseen analysointiin. Ylimääräiset aritmeettiset operaatiot eivät johda laskuvirheisiin. Määritä vastaus annetulla tarkkuudella. Yhtälöiden ratkaisua käytettäessä on totta, että riippumattoman muuttujan löytäminen tietylle funktiolle ei ole niin helppoa, varsinkin kun tutkitaan rinnakkaisia ​​suoria äärettömyydessä. Poikkeuksen vuoksi tarve on ilmeinen. Napaisuusero on yksiselitteinen. Oppilaitosopetuksen kokemuksesta opettajamme otti pääoppitunti, jolla yhtälöitä tutkittiin verkossa täydessä matemaattisessa mielessä. Tässä oli kyse suuremmista ponnisteluista ja erityisistä taidoista teorian soveltamisessa. Päätelmiemme puolesta ei pidä katsoa prisman läpi. Viime aikoihin asti uskottiin, että suljettu joukko kasvaa nopeasti alueella sellaisenaan, ja yhtälöiden ratkaisua on yksinkertaisesti tutkittava. Ensimmäisessä vaiheessa emme pohtineet kaikkia mahdollisia vaihtoehtoja, mutta tämä lähestymistapa on oikeutettu enemmän kuin koskaan. Hakasulkeilla tehdyt lisätoiminnot oikeuttavat joitakin edistysaskeleita pitkin ordinaatta- ja abskissa-akseleita, joita ei voi jättää huomiotta paljaalla silmällä. On olemassa käännepiste funktion laajan verrannollisen kasvun merkityksessä. Jälleen kerran todistamme kuinka välttämätön ehto sovelletaan vektorin yhden tai toisen laskevan kohdan koko laskevan ajanjakson ajan. Suljetussa tilassa valitsemme muuttujan skriptimme alkulohkosta. Kolmen vektorin pohjaksi rakennettu järjestelmä on vastuussa päävoimamomentin puuttumisesta. Yhtälölaskin kuitenkin päätteli ja auttoi löytämään kaikki muodostetun yhtälön ehdot sekä pinnan yläpuolella että yhdensuuntaisia ​​viivoja pitkin. Kuvataan ympyrä aloituspisteen ympärillä. Siten alamme liikkua ylöspäin leikkausviivoja pitkin ja tangentti kuvaa ympyrän koko pituudelta, minkä seurauksena saamme käyrän, jota kutsutaan involuutioksi. Muuten, puhutaanpa tästä käyrästä hieman historiaa. Tosiasia on, että historiallisesti matematiikassa ei ollut käsitettä itse matematiikasta sellaisena kuin se on nykyään. Aikaisemmin kaikki tiedemiehet harjoittivat yhtä yhteistä asiaa, eli tiedettä. Myöhemmin, muutama vuosisataa myöhemmin, kun tiedemaailma oli täynnä valtavaa määrää tietoa, ihmiskunta erotti kuitenkin monia tieteenaloja. Ne pysyvät edelleen ennallaan. Silti tutkijat ympäri maailmaa yrittävät joka vuosi todistaa, että tiede on rajaton, etkä voi ratkaista yhtälöä, ellei sinulla ole tietoa luonnontieteistä. Ei ehkä ole mahdollista saada lopuksi loppua. Sen ajatteleminen on yhtä turhaa kuin ulkoilman lämmittäminen. Etsitään väli, jolla argumentti positiivisella arvollaan määrittää arvon moduulin jyrkästi kasvavaan suuntaan. Reaktio auttaa löytämään vähintään kolme ratkaisua, mutta ne on tarkistettava. Aloitetaan siitä, että meidän on ratkaistava yhtälö verkossa käyttämällä verkkosivustomme ainutlaatuista palvelua. Esittelemme molemmat osat annettu yhtälö, paina "RATKAISEE" -painiketta ja saamme tarkan vastauksen muutamassa sekunnissa. Erikoistapauksissa otamme matematiikan kirjan ja tarkistamme vastauksemme, nimittäin katsomme vain vastausta ja kaikki tulee selväksi. Sama projekti lentää keinotekoisella redundantilla suuntaissärmiöllä. Siellä on suunnikkaat yhdensuuntaisine sivuineen, ja se selittää monia periaatteita ja lähestymistapoja onton tilan nousevan kasautumisprosessin tilasuhteen tutkimiseen luonnollisissa kaavoissa. Moniselitteiset lineaariyhtälöt osoittavat halutun muuttujan riippuvuuden yhteisestämme Tämä hetki aika päätöksellä ja se on jotenkin tarpeen vetää ja tuoda väärä murtoluku ei-triviaaliin tapaukseen. Merkitsemme suoralle viivalle kymmenen pistettä ja piirrämme jokaisen pisteen läpi käyrän tiettyyn suuntaan ja kuperalla ylöspäin. Yhtälölaskimemme esittää ilman suurempia vaikeuksia lausekkeen sellaisessa muodossa, että sen tarkistus sääntöjen oikeellisuudesta on ilmeinen jo tallennuksen alussa. Vakauden erityisesitysjärjestelmä matemaatikoille ensisijaisesti, ellei kaava toisin määrää. Vastaamme tähän yksityiskohtaisella esittelyllä raportista muovisten kappaleiden järjestelmän isomorfisesta tilasta ja yhtälöiden online-ratkaisu kuvaa jokaisen materiaalipisteen liikettä tässä järjestelmässä. Syvällisen tutkimuksen tasolla on tarpeen selvittää yksityiskohtaisesti kysymys ainakin alemman avaruuden kerroksen inversioista. Nousevassa järjestyksessä funktion epäjatkuvuusosuudella sovellamme muuten erinomaisen tutkijan, maanmiehen, yleistä menetelmää ja kerromme alla tason käyttäytymisestä. Analyyttisesti annetun funktion vahvoista ominaisuuksista johtuen käytämme online-yhtälölaskuria vain sen aiottuun tarkoitukseen johdettujen valtuuksien rajoissa. Väittelemällä edelleen, lopetamme tarkastelun itse yhtälön homogeenisuudesta, eli sen oikea puoli rinnastetaan nollaan. Taas kerran tarkistamme matematiikan päätöksemme oikeellisuuden. Triviaalin ratkaisun välttämiseksi teemme joitain muutoksia järjestelmän ehdollisen stabiilisuuden ongelman alkuehtoihin. Muodostetaan toisen asteen yhtälö, jolle kirjoitetaan kaksi merkintää tunnetulla kaavalla ja löydetään negatiiviset juuret. Jos yksi juuri ylittää toisen ja kolmannen juuren viidellä yksiköllä, niin tekemällä muutoksia pääargumenttiin vääristelemme siten alitehtävän alkuehtoja. Pohjimmiltaan jotain epätavallista matematiikassa voidaan aina kuvata lähimpään positiivisen luvun sadasosaan. Murtolukulaskin on useita kertoja parempi kuin vastaavat resurssit parhaimmillaan palvelimen kuormitushetkellä. Y-akselia pitkin kasvavan nopeusvektorin pinnalle piirretään seitsemän toisiinsa nähden vastakkaisiin suuntiin taivutettua viivaa. Määritetyn funktion argumentin vertailukelpoisuus johtaa palautussaldolaskurin. Matematiikassa tämä ilmiö voidaan esittää kuutioyhtälön avulla, jossa on imaginaariset kertoimet, sekä kaksinapaisena pienenevien viivojen etenemisenä. Kriittiset kohdat lämpötilaerot monissa merkityksessään ja edistymisessään kuvaavat monimutkaisen murtofunktion tekijöiden laskemista. Jos sinua kehotetaan ratkaisemaan yhtälö, älä kiirehdi tekemään sitä tällä hetkellä, arvioi ehdottomasti ensin koko toimintasuunnitelma ja vasta sitten valitse oikea lähestymistapa. Hyötyä tulee varmasti. Työn helppous on ilmeistä, ja se on sama matematiikassa. Ratkaise yhtälö verkossa. Kaikki online-yhtälöt ovat tietyntyyppisiä lukujen tai parametrien tietueita ja muuttujia, jotka on määritettävä. Laske tämä muuttuja, eli etsi tietyt arvot tai arvojoukon välit, joiden identiteetti täyttyy. Alku- ja loppuehdot riippuvat suoraan. AT yhteinen päätös yhtälöt sisältävät yleensä joitain muuttujia ja vakioita, joita asettamalla saamme kokonaisia ​​ratkaisuperheitä tietylle ongelmalausekkeelle. Yleensä tämä oikeuttaa ponnistelut, jotka on sijoitettu 100 senttimetriä vastaavan tilakuution toimivuuden lisäämiseen. Voit soveltaa lausetta tai lemmaa missä tahansa vastauksen rakentamisen vaiheessa. Sivusto julkaisee asteittain yhtälölaskimen, jos tarpeen, näyttää pienimmän arvon kaikilla tuotteiden summausvälillä. Puolessa tapauksista tällainen pallo onttona ei täytä suuremmassa määrin välivastauksen asettamisen vaatimuksia. Tekijä: vähintään y-akselilla pienenevän vektoriesityksen suuntaan tämä suhde on epäilemättä optimaalisempi kuin edellinen lauseke. Sinä tunnina, jolloin lineaarisille funktioille suoritetaan täydellinen pisteanalyysi, keräämme itse asiassa yhteen kaikki kompleksiluvumme ja bipolaaritasoavaruksemme. Korvaamalla muuttujan tuloksena olevaan lausekkeeseen, ratkaiset yhtälön vaiheittain ja annat yksityiskohtaisimman vastauksen suurella tarkkuudella. Jälleen kerran matematiikan toimien tarkistaminen on hyvä muoto opiskelijalta. Osuus jakeiden suhteesta kiinnitti tuloksen eheyden kaikilla nollavektorin tärkeillä toiminta-alueilla. Triviaalisuus vahvistetaan suoritettujen toimien lopussa. Yksinkertaisella tehtäväsarjalla opiskelijoille ei voi tulla vaikeuksia, jos he ratkaisevat yhtälön verkossa mahdollisimman lyhyessä ajassa, mutta älä unohda kaikenlaisia ​​​​sääntöjä. Osajoukot leikkaavat konvergoivan merkinnän alueella. Eri tapauksissa tuotetta ei eroteta virheellisesti. Sinua autetaan ratkaisemaan yhtälö verkossa ensimmäisessä osiossa, joka käsittelee matemaattisten tekniikoiden perusteita merkittäville osille yliopistojen ja teknisten oppilaitosten opiskelijoille. Esimerkkeihin vastaaminen ei joudu odottamaan montaa päivää, sillä vektorianalyysin parhaan vuorovaikutuksen prosessi ja peräkkäinen ratkaisujen etsiminen patentoitiin viime vuosisadan alussa. Osoittautuu, että pyrkimykset muodostaa yhteys ympäröivään tiimiin eivät olleet turhia, vaan jotain muuta oli ilmeisesti myöhässä. Useita sukupolvia myöhemmin tiedemiehet kaikkialla maailmassa saivat uskomaan, että matematiikka on tieteiden kuningatar. Oli kyseessä sitten vasen vastaus tai oikea vastaus, tyhjentävät termit on joka tapauksessa kirjoitettava kolmelle riville, koska meidän tapauksessamme puhumme yksiselitteisesti vain matriisin ominaisuuksien vektorianalyysistä. Epälineaariset ja lineaariset yhtälöt sekä kaksikvadraattiset yhtälöt ovat ottaneet erityisen paikan kirjassamme parhaat käytännöt liikeradan laskeminen suljetun järjestelmän kaikkien aineellisten pisteiden avaruudessa. Lineaarinen analyysi auttaa saamaan idean eloon pistetuote kolme peräkkäistä vektoria. Jokaisen asetuksen lopussa tehtävää helpotetaan ottamalla käyttöön optimoidut numeeriset poikkeukset suoritettavien numeeristen avaruuspeittojen yhteydessä. Erilainen tuomio ei vastusta tekstissä olevaa vastausta vapaa muoto kolmiot ympyrässä. Kahden vektorin välinen kulma sisältää vaaditun marginaaliprosentin, ja yhtälöiden ratkaiseminen verkossa paljastaa usein jonkin yhtälön yhteisen juuren, toisin kuin alkuehdot. Poikkeuksella on katalysaattorin rooli koko väistämättömässä positiivisen ratkaisun löytämisprosessissa funktion määrittelyn alalla. Jos ei sanota, että et osaa käyttää tietokonetta, niin online-yhtälölaskin on juuri oikea vaikeisiin tehtäviisi. Riittää, kun syötät ehdolliset tietosi oikeassa muodossa, ja palvelimemme antaa täyden vastauksen mahdollisimman lyhyessä ajassa. Eksponentiaalinen funktio kasvaa paljon nopeammin kuin lineaarinen. Tämän todistavat älykkään kirjastokirjallisuuden talmudit. Suorittaa laskennan yleisessä mielessä, kuten annettu neliöyhtälö, jossa on kolme kompleksikerrointa, tekisi. Puolitason yläosassa oleva paraabeli luonnehtii suoraviivaista yhdensuuntaista liikettä pisteen akseleita pitkin. Tässä on syytä mainita potentiaaliero kehon työtilassa. Vastineeksi alioptimaalisesta tuloksesta murto-laskurimme on oikeutetusti ensimmäinen sija toiminnallisten ohjelmien katsauksen matemaattisessa luokituksessa takapäässä. Miljoonat Internetin käyttäjät arvostavat tämän palvelun helppokäyttöisyyttä. Jos et tiedä kuinka käyttää sitä, autamme sinua mielellämme. Haluamme myös korostaa ja korostaa kuutioyhtälöä useista alakoululaisten tehtävistä, kun on nopeasti löydettävä sen juuret ja piirrettävä funktiokaavio tasolle. Korkeimmat lisääntymisasteet ovat yksi instituutin vaikeimmista matemaattisista ongelmista, ja sen opiskeluun on varattu riittävästi tunteja. Kuten kaikki lineaariset yhtälöt, meidän ei ole poikkeus moniin objektiivisiin sääntöihin, katso eri näkökulmista, ja se osoittautuu yksinkertaiseksi ja riittäväksi alkuehtojen asettamiseen. Kasvuväli on sama kuin funktion kuperuusväli. Yhtälöiden ratkaisu verkossa. Teorian opiskelu perustuu online-yhtälöihin lukuisista päätieteenalan tutkimuksen osioista. Tällaisen lähestymistavan tapauksessa epävarmoissa ongelmissa on erittäin helppoa esittää yhtälöiden ratkaisu ennalta määrätyssä muodossa eikä vain tehdä johtopäätöksiä, vaan myös ennustaa tällaisen positiivisen ratkaisun lopputulos. Palvelu auttaa meitä oppimaan aihealueen eniten parhaat perinteet matematiikkaa, aivan kuten idässä on tapana. Aikavälin parhailla hetkillä samanlaiset tehtävät kerrottiin yhteisellä kertoimella kymmenen kertaa. Kun yhtälölaskimessa oli runsaasti useiden muuttujien kertolaskuja, se alkoi kertoa laadulla, ei kvantitatiivisilla muuttujilla, kuten massalla tai ruumiinpainolla. Aineellisen järjestelmän epätasapainotapausten välttämiseksi on meille täysin ilmeistä kolmiulotteisen muuntimen johtaminen ei-degeneroituneiden matemaattisten matriisien triviaalista konvergenssista. Suorita tehtävä ja ratkaise yhtälö annetuissa koordinaateissa, koska lähtöä ei tiedetä etukäteen, samoin kuin kaikki jälkeisen ajan sisällä olevat muuttujat ovat tuntemattomia. Käytössä Lyhytaikainen siirrä yhteinen tekijä sulkeiden ulkopuolelle ja jaa etukäteen molempien osien suurimmalla yhteisellä jakajalla. Poimi tuloksena olevan lukujen osajoukon alta yksityiskohtainen tapa kolmekymmentäkolme pistettä peräkkäin lyhyessä ajassa. Sikäli kuin sisällä parhaimmillaan jokaisen opiskelijan on mahdollista ratkaista yhtälö verkossa eteenpäin katsoen, sanotaanpa yksi tärkeä, mutta avainasia, jota ilman meidän ei ole helppoa elää tulevaisuudessa. Viime vuosisadalla suuri tiedemies huomasi useita säännönmukaisuuksia matematiikan teoriassa. Käytännössä tapahtumista ei tullut aivan odotettua vaikutelmaa. Periaatteessa juuri tämä yhtälöratkaisu verkossa auttaa kuitenkin parantamaan kokonaisvaltaisen lähestymistavan ymmärtämistä ja käsitystä opiskelijoiden käsittämän teoreettisen aineiston käytännön yhdistämisestä. Tämä on paljon helpompaa tehdä opiskeluaikana.

=

7. luokan matematiikan kurssilla he tapaavat ensin yhtälöt kahdella muuttujalla, mutta niitä tutkitaan vain yhtälöjärjestelmien yhteydessä, joissa on kaksi tuntematonta. Tästä syystä joukko ongelmia putoaa näkyvistä, joissa yhtälön kertoimille asetetaan tiettyjä ehtoja, jotka rajoittavat niitä. Lisäksi ongelmien ratkaisumenetelmät, kuten "Ratkaise yhtälö luonnollisina tai kokonaislukuina", jätetään myös huomiotta, vaikka KÄYTÄ materiaaleja ja pääsykokeissa tällaisia ​​ongelmia kohdataan yhä useammin.

Mitä yhtälöä kutsutaan yhtälöksi, jossa on kaksi muuttujaa?

Joten esimerkiksi yhtälöt 5x + 2y = 10, x 2 + y 2 = 20 tai xy = 12 ovat kaksimuuttujayhtälöitä.

Tarkastellaan yhtälöä 2x - y = 1. Se muuttuu todelliseksi yhtälöksi kohdissa x = 2 ja y = 3, joten tämä muuttujaarvopari on ratkaisu tarkasteltavaan yhtälöön.

Siten minkä tahansa yhtälön ratkaisu kahdella muuttujalla on joukko järjestettyjä pareja (x; y), muuttujien arvot, jotka tämä yhtälö muuttaa todelliseksi numeeriseksi yhtälöksi.

Yhtälö, jossa on kaksi tuntematonta, voi:

a) on yksi ratkaisu. Esimerkiksi yhtälöllä x 2 + 5y 2 = 0 on ainoa päätös (0; 0);

b) on useita ratkaisuja. Esimerkiksi (5 -|x|) 2 + (|y| – 2) 2 = 0 sisältää 4 ratkaisua: (5; 2), (-5; 2), (5; -2), (-5; -2);

sisään) ei ole ratkaisuja. Esimerkiksi yhtälöllä x 2 + y 2 + 1 = 0 ei ole ratkaisuja;

G) ratkaisuja on äärettömän monta. Esimerkiksi x + y = 3. Tämän yhtälön ratkaisut ovat lukuja, joiden summa on 3. Tämän yhtälön ratkaisujen joukko voidaan kirjoittaa muodossa (k; 3 - k), missä k on mikä tahansa reaaliluku.

Tärkeimmät menetelmät kahdella muuttujalla olevien yhtälöiden ratkaisemiseksi ovat menetelmät, jotka perustuvat factoring-lausekkeisiin, joissa korostetaan koko neliö ja käytetään ominaisuuksia toisen asteen yhtälö, rajoitetut ilmaisut, arviointimenetelmät. Yhtälö muunnetaan pääsääntöisesti muotoon, josta voidaan saada järjestelmä tuntemattomien löytämiseksi.

Faktorisointi

Esimerkki 1

Ratkaise yhtälö: xy - 2 = 2x - y.

Ratkaisu.

Ryhmittelemme ehdot factoringia varten:

(xy + y) - (2x + 2) = 0. Ota yhteinen kerroin kustakin suluista:

y(x + 1) – 2(x + 1) = 0;

(x + 1)(y - 2) = 0. Meillä on:

y = 2, x on mikä tahansa reaaliluku tai x = -1, y on mikä tahansa reaaliluku.

Tällä tavalla, vastaus on kaikki muodon (x; 2), x € R ja (-1; y), y € R parit.

Ei-negatiivisten lukujen nollan yhtäläisyys

Esimerkki 2

Ratkaise yhtälö: 9x 2 + 4y 2 + 13 = 12(x + y).

Ratkaisu.

Ryhmittely:

(9x 2 - 12x + 4) + (4y 2 - 12y + 9) = 0. Nyt jokainen sulku voidaan tiivistää neliöerokaavalla.

(3x - 2) 2 + (2v - 3) 2 = 0.

Kahden ei-negatiivisen lausekkeen summa on nolla vain, jos 3x - 2 = 0 ja 2y - 3 = 0.

Joten x = 2/3 ja y = 3/2.

Vastaus: (2/3; 3/2).

Arviointimenetelmä

Esimerkki 3

Ratkaise yhtälö: (x 2 + 2x + 2) (y 2 - 4y + 6) = 2.

Ratkaisu.

Valitse jokaisesta hakasulkeesta täysi neliö:

((x + 1) 2 + 1)((y – 2) 2 + 2) = 2. Arvio suluissa olevien ilmaisujen merkitys.

(x + 1) 2 + 1 ≥ 1 ja (y - 2) 2 + 2 ≥ 2, silloin yhtälön vasen puoli on aina vähintään 2. Tasa-arvo on mahdollinen, jos:

(x + 1) 2 + 1 = 1 ja (y - 2) 2 + 2 = 2, joten x = -1, y = 2.

Vastaus: (-1; 2).

Tutustutaan toiseen menetelmään yhtälöiden ratkaisemiseksi kahdella toisen asteen muuttujalla. Tämä menetelmä on, että yhtälöä pidetään neliö jonkin muuttujan suhteen.

Esimerkki 4

Ratkaise yhtälö: x 2 - 6x + y - 4√y + 13 = 0.

Ratkaisu.

Ratkaistaan ​​yhtälö neliöllisenä x:n suhteen. Etsitään diskriminantti:

D = 36-4(y-4√y + 13) = -4y + 16√y-16 = -4(√y-2)2. Yhtälöllä on ratkaisu vain kun D = 0, eli jos y = 4. Korvaamme y:n arvon alkuperäiseen yhtälöön ja huomaamme, että x = 3.

Vastaus: (3; 4).

Usein yhtälöissä kaksi tuntematonta osoittavat muuttujien rajoituksia.

Esimerkki 5

Ratkaise yhtälö kokonaislukuina: x 2 + 5y 2 = 20x + 2.

Ratkaisu.

Kirjoitetaan yhtälö uudelleen muotoon x 2 = -5y 2 + 20x + 2. Tuloksena olevan yhtälön oikea puoli, kun se jaetaan 5:llä, antaa jäännöksen 2:sta. Siksi x 2 ei ole jaollinen viidellä. Mutta neliö luku, joka ei ole jaollinen viidellä, antaa jäännöksen 1 tai 4. Näin ollen yhtäläisyys on mahdotonta eikä ratkaisuja ole.

Vastaus: ei juuria.

Esimerkki 6

Ratkaise yhtälö: (x 2 - 4|x| + 5) (y 2 + 6y + 12) = 3.

Ratkaisu.

Valitsemme täydet ruudut kustakin suluista:

((|x| – 2) 2 + 1)((y + 3) 2 + 3) = 3. Yhtälön vasen puoli on aina suurempi tai yhtä suuri kuin 3. Tasa-arvo on mahdollinen, jos |x| – 2 = 0 ja y + 3 = 0. Siten x = ± 2, y = -3.

Vastaus: (2; -3) ja (-2; -3).

Esimerkki 7

Jokaiselle negatiivisten kokonaislukujen (x; y) parille, joka täyttää yhtälön
x 2 - 2xy + 2y 2 + 4y = 33, laske summa (x + y). Vastaa pienimpään summaan.

Ratkaisu.

Valitse täydet neliöt:

(x 2 - 2xy + y 2) + (y 2 + 4y + 4) = 37;

(x - y) 2 + (y + 2) 2 = 37. Koska x ja y ovat kokonaislukuja, myös niiden neliöt ovat kokonaislukuja. Kahden kokonaisluvun neliöiden summa, joka on yhtä suuri kuin 37, saadaan, jos lasketaan yhteen 1 + 36. Siksi:

(x - y) 2 = 36 ja (y + 2) 2 = 1

(x - y) 2 = 1 ja (y + 2) 2 = 36.

Ratkaisemalla nämä järjestelmät ja ottaen huomioon, että x ja y ovat negatiivisia, löydämme ratkaisut: (-7; -1), (-9; -3), (-7; -8), (-9; -8).

Vastaus: -17.

Älä vaivu epätoivoon, jos sinulla on vaikeuksia ratkaista yhtälöitä kahdella tuntemattomalla. Pienellä harjoituksella pystyt hallitsemaan minkä tahansa yhtälön.

Onko sinulla kysymyksiä? Etkö tiedä kuinka ratkaista yhtälöitä kahdella muuttujalla?
Saadaksesi tutorin apua - rekisteröidy.
Ensimmäinen oppitunti on ilmainen!

Sivusto, jossa materiaali kopioidaan kokonaan tai osittain, linkki lähteeseen vaaditaan.