Simplificarea expresiilor exponențiale și logaritmice. Formule de jurnal

Problema B7 dă o expresie care trebuie simplificată. Rezultatul ar trebui să fie un număr obișnuit care poate fi scris pe foaia de răspuns. Toate expresiile sunt împărțite condiționat în trei tipuri:

  1. logaritmic,
  2. Demonstrație,
  3. Combinate.

Expresiile exponențiale și logaritmice în forma lor pură nu sunt aproape niciodată găsite. Cu toate acestea, este esențial să știi cum sunt calculate.

În general, problema B7 este rezolvată destul de simplu și este destul de în puterea absolventului mediu. Lipsa algoritmilor clari este compensată de standardul și uniformitatea acestuia. Puteți învăța cum să rezolvați astfel de probleme pur și simplu un numar mare antrenamente.

Expresii logaritmice

Marea majoritate a problemelor B7 conțin logaritmi într-o formă sau alta. Acest subiect este considerat în mod tradițional dificil, deoarece este de obicei studiat în clasa a XI-a - epoca pregătirii în masă pentru examenele finale. Drept urmare, mulți absolvenți au o idee foarte vagă despre logaritmi.

Dar în această sarcină, nimeni nu necesită cunoștințe teoretice profunde. Vom întâlni doar cele mai simple expresii care necesită un raționament simplu și care pot fi stăpânite independent. Mai jos sunt formulele de bază pe care trebuie să le cunoașteți pentru a face față logaritmilor:

În plus, trebuie să puteți înlocui rădăcinile și fracțiile cu puteri cu un exponent rațional, altfel în unele expresii pur și simplu nu va fi nimic de scos de sub semnul logaritmului. Formule de înlocuire:

O sarcină. Găsiți valorile expresiei:
log 6 270 − log 6 7.5
log 5 775 − log 5 6.2

Primele două expresii sunt convertite ca diferență de logaritmi:
log 6 270 − log 6 7,5 = log 6 (270: 7,5) = log 6 36 = 2;
log 5 775 − log 5 6,2 = log 5 (775: 6,2) = log 5 125 = 3.

Pentru a calcula a treia expresie, va trebui să selectați grade - atât în ​​bază, cât și în argument. Mai întâi, să găsim logaritmul intern:

Apoi - extern:

Construcții precum butucul a bușteanul b x par complicate și neînțelese pentru mulți. Între timp, acesta este doar logaritmul logaritmului, adică. log a (log b x ). Mai întâi se calculează logaritmul interior (puneți log b x = c ), iar apoi cel exterior: log a c .

expresii exponenţiale

Vom numi o expresie exponențială orice construcție de forma a k , unde numerele a și k sunt constante arbitrare, iar a > 0. Metodele de lucru cu astfel de expresii sunt destul de simple și sunt luate în considerare la lecțiile de algebră de clasa a VIII-a.

Mai jos sunt formulele de bază pe care trebuie să le cunoașteți. Aplicarea acestor formule în practică, de regulă, nu pune probleme.

  1. a n a m = a n + m ;
  2. a n / a m = a n - m ;
  3. (a n ) m = a n m ;
  4. (a b) n = a n b n ;
  5. (a : b ) n = a n : b n .

Dacă se întâlnește o expresie complexă cu puteri și nu este clar cum să o abordăm, se folosește o tehnică universală - descompunerea în factori primi. Ca urmare, numerele mari din bazele de grade sunt înlocuite cu elemente simple și ușor de înțeles. Apoi, rămâne doar să aplicați formulele de mai sus - și problema va fi rezolvată.

O sarcină. Găsiți valorile expresiei: 7 9 3 11: 21 8 , 24 7: 3 6: 16 5 , 30 6: 6 5: 25 2 .

Soluţie. Descompunem toate bazele puterilor în factori primi:
7 9 3 11: 21 8 = 7 9 3 11: (7 3) 8 = 7 9 3 11: (7 8 3 8) = 7 9 3 11: 7 8: 3 8 = 7 3 3 = 189.
24 7: 3 6: 16 5 = (3 2 3) 7: 3 6: (2 4) 5 = 3 7 2 21: 3 6: 2 20 = 3 2 = 6.
30 6: 6 5: 25 2 = (5 3 2) 6: (3 2) 5: (5 2) 2 = 5 6 3 6 2 6: 3 5: 2 5: 5 4 = 5 2 3 2 = 150 .

Sarcini combinate

Dacă cunoașteți formulele, atunci toate expresiile exponențiale și logaritmice sunt rezolvate literalmente într-o singură linie. Cu toate acestea, în problema B7, puterile și logaritmii pot fi combinate pentru a forma combinații destul de puternice.

Instruire

Notați expresia logaritmică dată. Dacă expresia folosește logaritmul lui 10, atunci notația sa este scurtată și arată astfel: lg b este logaritmul zecimal. Dacă logaritmul are ca bază numărul e, atunci se scrie expresia: ln b este logaritmul natural. Se înțelege că rezultatul oricărei este puterea la care trebuie ridicat numărul de bază pentru a obține numărul b.

Când găsiți două funcții din sumă, trebuie doar să le diferențiați una câte una și să adăugați rezultatele: (u+v)" = u"+v";

La găsirea derivatei produsului a două funcții, este necesar să înmulțiți derivata primei funcții cu a doua și să adăugați derivata celei de-a doua funcții, înmulțită cu prima funcție: (u*v)" = u"* v+v"*u;

Pentru a afla derivata coeficientului a doua functii este necesar, din produsul derivatei dividendului inmultit cu functia divizor, sa scadem produsul derivatei divizorului inmultit cu functia divizor si sa impartim toate acestea prin funcția divizor la pătrat. (u/v)" = (u"*v-v"*u)/v^2;

Dacă este dată o funcție complexă, atunci este necesar să se înmulțească derivata funcției interioare și derivata celei exterioare. Fie y=u(v(x)), apoi y"(x)=y"(u)*v"(x).

Folosind cele obținute mai sus, puteți diferenția aproape orice funcție. Deci, să ne uităm la câteva exemple:

y=x^4, y"=4*x^(4-1)=4*x^3;

y=2*x^3*(e^x-x^2+6), y"=2*(3*x^2*(e^x-x^2+6)+x^3*(e^x-2 *X));
Există, de asemenea, sarcini pentru calcularea derivatei la un punct. Fie dată funcția y=e^(x^2+6x+5), trebuie să găsiți valoarea funcției în punctul x=1.
1) Aflați derivata funcției: y"=e^(x^2-6x+5)*(2*x +6).

2) Calculați valoarea funcției în punct dat y"(1)=8*e^0=8

Videoclipuri similare

Sfat util

Învață tabelul derivatelor elementare. Acest lucru va economisi mult timp.

Surse:

  • derivată constantă

Deci, care este diferența dintre o ecuație irațională și una rațională? Dacă variabila necunoscută se află sub semnul rădăcinii pătrate, atunci ecuația este considerată irațională.

Instruire

Principala metodă de rezolvare a unor astfel de ecuații este metoda de ridicare a ambelor părți ecuațiiîntr-un pătrat. In orice caz. acest lucru este firesc, primul pas este să scapi de semn. Din punct de vedere tehnic, această metodă nu este dificilă, dar uneori poate duce la probleme. De exemplu, ecuația v(2x-5)=v(4x-7). Punând la pătrat ambele părți, obțineți 2x-5=4x-7. O astfel de ecuație nu este greu de rezolvat; x=1. Dar numărul 1 nu va fi dat ecuații. De ce? Înlocuiți unitatea din ecuație în loc de valoarea x. Și părțile din dreapta și din stânga vor conține expresii care nu au sens, adică. O astfel de valoare nu este valabilă pentru o rădăcină pătrată. Prin urmare, 1 este o rădăcină străină și, prin urmare, această ecuație nu are rădăcini.

Deci, ecuația irațională se rezolvă folosind metoda punerii la pătrat a ambelor părți. Și după ce am rezolvat ecuația, este necesar să tăiați rădăcinile străine. Pentru a face acest lucru, înlocuiți rădăcinile găsite în ecuația originală.

Luați în considerare altul.
2x+vx-3=0
Desigur, această ecuație poate fi rezolvată folosind aceeași ecuație ca cea anterioară. Compuși de transfer ecuații, care nu au rădăcină pătrată, în partea dreaptă și apoi folosiți metoda pătratului. rezolvați ecuația rațională și rădăcinile rezultate. Dar altul, mai elegant. Introduceți o nouă variabilă; vx=y. În consecință, veți obține o ecuație ca 2y2+y-3=0. Adică de obicei ecuație pătratică. Găsește-i rădăcinile; y1=1 și y2=-3/2. Apoi, rezolvă două ecuații vx=1; vx \u003d -3/2. A doua ecuație nu are rădăcini, din prima găsim că x=1. Nu uitați de necesitatea de a verifica rădăcinile.

Rezolvarea identităților este destul de ușoară. Acest lucru necesită realizarea de transformări identice până la atingerea scopului. Astfel, cu ajutorul celor mai simple operații aritmetice, sarcina va fi rezolvată.

Vei avea nevoie

  • - hartie;
  • - un stilou.

Instruire

Cele mai simple astfel de transformări sunt înmulțirile algebrice abreviate (cum ar fi pătratul sumei (diferența), diferența de pătrate, suma (diferența), cubul sumei (diferența)). În plus, sunt multe formule trigonometrice, care sunt în esență aceleași identități.

Într-adevăr, pătratul sumei a doi termeni este egal cu pătratul primului plus de două ori produsul primului și al doilea plus pătratul celui de-al doilea, adică (a+b)^2= (a+b )(a+b)=a^2+ab +ba+b ^2=a^2+2ab+b^2.

Simplificați ambele

Principii generale de rezolvare

Repetați manualul analiză matematică sau matematică superioară, care este o integrală definită. După cum știți, soluția integrala definita există o funcţie a cărei derivată va da un integrand. Această funcție se numeste primitiv. Conform acestui principiu se construiesc integralele de bază.
Determinați după forma integrandului care dintre integralele tabelului este potrivită în acest caz. Nu este întotdeauna posibil să determinați acest lucru imediat. Adesea, forma tabulară devine vizibilă numai după mai multe transformări pentru a simplifica integrandul.

Metoda substituției variabile

Dacă integrantul este functie trigonometrica, al cărui argument este un polinom, apoi încercați să utilizați metoda substituției variabilelor. Pentru a face acest lucru, înlocuiți polinomul din argumentul integrandului cu o nouă variabilă. Pe baza raportului dintre variabila nouă și veche, determinați noile limite de integrare. Prin diferențierea acestei expresii, găsiți o nouă diferență în . Astfel vei primi noul fel prima integrală, apropiată sau chiar corespunzătoare oricărui tabel.

Rezolvarea integralelor de al doilea fel

Dacă integrala este o integrală de al doilea fel, forma vectorială a integrandului, atunci va trebui să utilizați regulile pentru trecerea de la aceste integrale la cele scalare. O astfel de regulă este raportul Ostrogradsky-Gauss. Această lege face posibilă trecerea de la fluxul rotor al unei anumite funcții vectoriale la o integrală triplă peste divergența unui câmp vectorial dat.

Înlocuirea limitelor integrării

După găsirea antiderivatei, este necesar să se substituie limitele integrării. În primul rând, înlocuiți valoarea limitei superioare în expresia pentru antiderivată. Vei primi un număr. Apoi, scădeți din numărul rezultat un alt număr, limita inferioară rezultată la antiderivată. Dacă una dintre limitele de integrare este infinit, atunci înlocuind-o în funcția antiderivată este necesar să mergem la limită și să găsim spre ce tinde expresia.
Dacă integrala este bidimensională sau tridimensională, atunci va trebui să reprezentați limitele geometrice ale integrării pentru a înțelege cum să calculați integrala. Într-adevăr, în cazul, de exemplu, a unei integrale tridimensionale, limitele integrării pot fi plane întregi care limitează volumul de integrat.

derivată din definiția sa. Și astfel logaritmul numărului b prin rațiune A definit ca exponentul la care trebuie ridicat un număr A pentru a obține numărul b(logaritmul există doar pentru numere pozitive).

Din această formulare rezultă că calculul x=log a b, este echivalent cu rezolvarea ecuației ax=b. De exemplu, log 2 8 = 3 deoarece 8 = 2 3 . Formularea logaritmului face posibilă justificarea că dacă b=a c, apoi logaritmul numărului b prin rațiune A egală Cu. De asemenea, este clar că subiectul logaritmului este strâns legat de subiectul puterii unui număr.

Cu logaritmi, ca și în cazul oricăror numere, puteți performa operații de adunare, scădereși se transformă în toate modurile posibile. Dar având în vedere faptul că logaritmii nu sunt numere obișnuite, aici se aplică propriile reguli speciale, care sunt numite proprietăți de bază.

Adunarea și scăderea logaritmilor.

Luați doi logaritmi cu aceeași bază: log xși log a y. Apoi eliminați este posibil să efectuați operații de adunare și scădere:

log a x+ log a y= log a (x y);

log a x - log a y = log a (x:y).

log a(X 1 . X 2 . X 3 ... x k) = log x 1 + log x 2 + log x 3 + ... + log a x k.

Din teoreme ale logaritmului coeficientului mai poate fi obținută o proprietate a logaritmului. Este bine cunoscut acel jurnal A 1= 0, prin urmare,

Buturuga A 1 /b= jurnal A 1 - jurnal a b= -log a b.

Deci există o egalitate:

log a 1 / b = - log a b.

Logaritmi a două numere reciproc reciproce pe aceeași bază vor diferi unele de altele doar prin semn. Asa de:

Log 3 9= - log 3 1 / 9 ; log 5 1 / 125 = -log 5 125.


Continuăm să studiem logaritmii. În acest articol vom vorbi despre calculul logaritmilor, acest proces se numește logaritm. În primul rând, ne vom ocupa de calculul logaritmilor prin definiție. Apoi, luați în considerare modul în care sunt găsite valorile logaritmilor folosind proprietățile lor. După aceea, ne vom opri asupra calculului logaritmilor prin valorile date inițial ale altor logaritmi. În cele din urmă, să învățăm cum să folosim tabelele de logaritmi. Întreaga teorie este furnizată cu exemple cu soluții detaliate.

Navigare în pagină.

Calcularea logaritmilor prin definiție

În cele mai simple cazuri, este posibil să efectuați rapid și ușor găsirea logaritmului prin definiție. Să aruncăm o privire mai atentă asupra modului în care are loc acest proces.

Esența sa este de a reprezenta numărul b sub forma a c , de unde, după definiția logaritmului, numărul c este valoarea logaritmului. Adică, prin definiție, găsirea logaritmului corespunde următorului lanț de egalități: log a b=log a a c =c .

Deci, calculul logaritmului, prin definiție, se reduce la găsirea unui astfel de număr c care a c \u003d b, iar numărul c însuși este valoarea dorită a logaritmului.

Având în vedere informațiile din paragrafele anterioare, atunci când numărul de sub semnul logaritmului este dat de un anumit grad al bazei logaritmului, atunci puteți indica imediat cu ce este egal logaritmul - este egal cu exponentul. Să arătăm exemple.

Exemplu.

Găsiți log 2 2 −3 și, de asemenea, calculați logaritmul natural al lui e 5.3 .

Soluţie.

Definiția logaritmului ne permite să spunem imediat că log 2 2 −3 = −3 . Într-adevăr, numărul de sub semnul logaritmului este egal cu baza 2 la puterea −3.

În mod similar, găsim al doilea logaritm: lne 5.3 =5.3.

Răspuns:

log 2 2 −3 = −3 și lne 5.3 =5.3 .

Dacă numărul b sub semnul logaritmului nu este dat ca putere a bazei logaritmului, atunci trebuie să luați în considerare cu atenție dacă este posibil să veniți cu o reprezentare a numărului b sub forma a c . Adesea, această reprezentare este destul de evidentă, mai ales când numărul de sub semnul logaritmului este egal cu baza puterii lui 1, sau 2, sau 3, ...

Exemplu.

Calculați logaritmii log 5 25 și .

Soluţie.

Este ușor de observat că 25=5 2 , aceasta vă permite să calculați primul logaritm: log 5 25=log 5 5 2 =2 .

Se trece la calculul celui de-al doilea logaritm. Un număr poate fi reprezentat ca o putere a lui 7: (vezi dacă este necesar). Prin urmare, .

Să rescriem al treilea logaritm în forma următoare. Acum poți vedea asta , de unde tragem concluzia că . Prin urmare, prin definiția logaritmului .

Pe scurt, soluția ar putea fi scrisă după cum urmează:

Răspuns:

log 5 25=2 , și .

Când există o valoare suficient de mare sub semnul logaritmului numar natural, atunci nu strica să-l descompuneți în factori primi. Adesea ajută să reprezentați un astfel de număr ca o putere a bazei logaritmului și, prin urmare, să calculați acest logaritm prin definiție.

Exemplu.

Aflați valoarea logaritmului.

Soluţie.

Unele proprietăți ale logaritmilor vă permit să specificați imediat valoarea logaritmilor. Aceste proprietăți includ proprietatea logaritmului unității și proprietatea logaritmului unui număr, egal cu baza: log 1 1=log a a 0 =0 și log a a=log a a 1 =1 . Adică, atunci când numărul 1 sau numărul a se află sub semnul logaritmului, egal cu baza logaritmului, atunci în aceste cazuri logaritmii sunt 0 și, respectiv, 1.

Exemplu.

Care sunt logaritmii și lg10?

Soluţie.

Deoarece , rezultă din definiția logaritmului .

În al doilea exemplu, numărul 10 sub semnul logaritmului coincide cu baza sa, deci logaritmul zecimal de zece este egal cu unu, adică lg10=lg10 1 =1 .

Răspuns:

Și lg10=1.

Rețineți că calcularea logaritmilor prin definiție (pe care am discutat în paragraful anterior) implică utilizarea logaritmului de egalitate a a p =p , care este una dintre proprietățile logaritmilor.

În practică, când numărul de sub semnul logaritmului și baza logaritmului sunt ușor de reprezentat ca putere a unui număr, este foarte convenabil să folosiți formula , care corespunde uneia dintre proprietățile logaritmilor. Luați în considerare un exemplu de găsire a logaritmului, ilustrând utilizarea acestei formule.

Exemplu.

Calculați logaritmul lui .

Soluţie.

Răspuns:

.

Proprietățile logaritmilor nemenționați mai sus sunt și ele folosite în calcul, dar despre asta vom vorbi în paragrafele următoare.

Găsirea logaritmilor în termenii altor logaritmi cunoscuți

Informațiile din acest paragraf continuă subiectul utilizării proprietăților logaritmilor în calculul lor. Dar aici principala diferență este că proprietățile logaritmilor sunt folosite pentru a exprima logaritmul original în termenii unui alt logaritm, a cărui valoare este cunoscută. Să luăm un exemplu pentru clarificare. Să presupunem că știm că log 2 3≈1.584963 , atunci putem găsi, de exemplu, log 2 6 făcând o mică transformare folosind proprietățile logaritmului: log 2 6=log 2 (2 3)=log 2 2+log 2 3≈ 1+1,584963=2,584963 .

În exemplul de mai sus, a fost suficient să folosim proprietatea logaritmului produsului. Cu toate acestea, mult mai des trebuie să utilizați un arsenal mai larg de proprietăți ale logaritmilor pentru a calcula logaritmul inițial în ceea ce privește cele date.

Exemplu.

Calculați logaritmul de la 27 la baza 60 dacă se știe că log 60 2=a și log 60 5=b .

Soluţie.

Deci trebuie să găsim log 60 27 . Este ușor de observat că 27=3 3 , iar logaritmul original, datorită proprietății logaritmului gradului, poate fi rescris ca 3·log 60 3 .

Acum să vedem cum log 60 3 poate fi exprimat în termeni de logaritmi cunoscuți. Proprietatea logaritmului unui număr egal cu baza vă permite să scrieți logaritmul de egalitate 60 60=1 . Pe de altă parte, log 60 60=log60(2 2 3 5)= log 60 2 2 +log 60 3+log 60 5= 2 log 60 2+log 60 3+log 60 5 . În acest fel, 2 log 60 2+log 60 3+log 60 5=1. Prin urmare, log 60 3=1−2 log 60 2−log 60 5=1−2 a−b.

În cele din urmă, calculăm logaritmul original: log 60 27=3 log 60 3= 3 (1−2 a−b)=3−6 a−3 b.

Răspuns:

log 60 27=3 (1−2 a−b)=3−6 a−3 b.

Separat, merită menționat sensul formulei pentru trecerea la o nouă bază a logaritmului formei . Vă permite să treceți de la logaritmi cu orice bază la logaritmi cu o anumită bază, ale căror valori sunt cunoscute sau este posibil să le găsiți. De obicei, din logaritmul inițial, conform formulei de tranziție, se trec la logaritmi într-una dintre bazele 2, e sau 10, deoarece pentru aceste baze există tabele de logaritmi care permit calcularea valorilor lor cu un anumit grad de precizie. În secțiunea următoare, vom arăta cum se face acest lucru.

Tabele de logaritmi, utilizarea lor

Pentru un calcul aproximativ al valorilor logaritmilor, se poate folosi tabele logaritmice. Cele mai utilizate sunt tabelul cu logaritmi de bază 2, tabelul cu logaritmi naturali și tabelul cu logaritmi zecimal. Când lucrați în sistemul numeric zecimal, este convenabil să utilizați un tabel de logaritmi la baza zece. Cu ajutorul lui, vom învăța să găsim valorile logaritmilor.










Tabelul prezentat permite, cu o precizie de o zecemiime, să se găsească valorile logaritmilor zecimali ale numerelor de la 1.000 la 9.999 (cu trei zecimale). Principiul găsirii valorii logaritmului folosind tabelul de logaritmi zecimali va fi analizat în exemplu concret- mult mai clar. Să găsim lg1,256 .

În coloana din stânga a tabelului de logaritmi zecimal găsim primele două cifre ale numărului 1,256, adică găsim 1,2 (acest număr este încercuit cu albastru pentru claritate). A treia cifră a numărului 1.256 (numărul 5) se găsește în prima sau ultima linie din stânga liniei duble (acest număr este încercuit cu roșu). A patra cifră a numărului original 1.256 (numărul 6) se găsește în prima sau ultima linie din dreapta liniei duble (acest număr este încercuit cu verde). Acum găsim numerele în celulele tabelului de logaritmi la intersecția rândului marcat și coloanelor marcate (aceste numere sunt evidențiate portocale). Suma numerelor marcate dă valoarea dorită a logaritmului zecimal până la a patra zecimală, adică log1,236≈0,0969+0,0021=0,0990.

Este posibil, folosind tabelul de mai sus, să găsiți valorile logaritmilor zecimali ale numerelor care au mai mult de trei cifre după virgulă zecimală și să depășească, de asemenea, limitele de la 1 la 9,999? Da, poti. Să arătăm cum se face acest lucru cu un exemplu.

Să calculăm lg102.76332 . Mai întâi trebuie să scrii număr în formă standard: 102,76332=1,0276332 10 2 . După aceea, mantisa ar trebui să fie rotunjită la a treia zecimală, avem 1,0276332 10 2 ≈1,028 10 2, în timp ce logaritmul zecimal inițial este aproximativ egal cu logaritmul numărului rezultat, adică luăm lg102.76332≈lg1.028·10 2 . Acum aplicați proprietățile logaritmului: lg1.028 10 2 =lg1.028+lg10 2 =lg1.028+2. În final, găsim valoarea logaritmului lg1.028 conform tabelului de logaritmi zecimali lg1.028≈0.0086+0.0034=0.012. Ca rezultat, întregul proces de calculare a logaritmului arată astfel: lg102.76332=lg1.0276332 10 2 ≈lg1.028 10 2 = lg1.028+lg10 2 =lg1.028+2≈0.012+2=2.012.

În concluzie, este de remarcat faptul că folosind tabelul de logaritmi zecimali, puteți calcula valoarea aproximativă a oricărui logaritm. Pentru a face acest lucru, este suficient să utilizați formula de tranziție pentru a merge la logaritmi zecimali, pentru a găsi valorile acestora în tabel și pentru a efectua calculele rămase.

De exemplu, să calculăm log 2 3 . Conform formulei pentru trecerea la o nouă bază a logaritmului, avem . Din tabelul logaritmilor zecimali găsim lg3≈0,4771 și lg2≈0,3010. În acest fel, .

Bibliografie.

  • Kolmogorov A.N., Abramov A.M., Dudnitsyn Yu.P. şi alţii.Algebra şi începuturile analizei: un manual pentru clasele 10-11 ale instituţiilor de învăţământ general.
  • Gusev V.A., Mordkovich A.G. Matematică (un manual pentru solicitanții la școlile tehnice).

Astăzi vom vorbi despre formule logaritmiceși dați o demonstrație exemple de solutie.

Prin ele însele, ele implică modele de soluție conform proprietăților de bază ale logaritmilor. Înainte de a aplica formulele logaritmice la soluție, reamintim pentru dvs., mai întâi toate proprietățile:

Acum, pe baza acestor formule (proprietăți), arătăm exemple de rezolvare a logaritmilor.

Exemple de rezolvare a logaritmilor pe bază de formule.

Logaritm un număr pozitiv b în baza a (notat log a b) este exponentul la care trebuie ridicat a pentru a obține b, cu b > 0, a > 0 și 1.

Conform definiției log a b = x, care este echivalent cu a x = b, deci log a a x = x.

Logaritmi, exemple:

log 2 8 = 3, deoarece 2 3 = 8

log 7 49 = 2 deoarece 7 2 = 49

log 5 1/5 = -1, deoarece 5 -1 = 1/5

Logaritm zecimal este un logaritm obișnuit, a cărui bază este 10. Notat cu lg.

log 10 100 = 2 deoarece 10 2 = 100

logaritmul natural- și logaritmul obișnuit, dar cu baza e (e \u003d 2,71828 ... - un număr irațional). Denumită ln.

Este de dorit să ne amintim formulele sau proprietățile logaritmilor, deoarece vom avea nevoie de ele mai târziu când rezolvăm logaritmi, ecuații logaritmiceși inegalități. Să lucrăm din nou prin fiecare formulă cu exemple.

  • Identitatea logaritmică de bază
    un log a b = b

    8 2log 8 3 = (8 2log 8 3) 2 = 3 2 = 9

  • Logaritmul produsului este egal cu suma logaritmilor
    log a (bc) = log a b + log a c

    log 3 8,1 + log 3 10 = log 3 (8,1*10) = log 3 81 = 4

  • Logaritmul coeficientului este egal cu diferența logaritmilor
    log a (b/c) = log a b - log a c

    9 log 5 50 /9 log 5 2 = 9 log 5 50- log 5 2 = 9 log 5 25 = 9 2 = 81

  • Proprietățile gradului unui număr logaritmabil și ale bazei logaritmului

    Exponentul unui număr logaritmic log a b m = mlog a b

    Exponent al bazei logaritmului log a n b =1/n*log a b

    log a n b m = m/n*log a b,

    dacă m = n, obținem log a n b n = log a b

    log 4 9 = log 2 2 3 2 = log 2 3

  • Trecerea la o nouă fundație
    log a b = log c b / log c a,

    dacă c = b, obținem log b b = 1

    atunci log a b = 1/log b a

    log 0,8 3*log 3 1,25 = log 0,8 3*log 0,8 1,25/log 0,8 3 = log 0,8 1,25 = log 4/5 5/4 = -1

După cum puteți vedea, formulele logaritmice nu sunt atât de complicate pe cât par. Acum, având în vedere exemple de rezolvare a logaritmilor, putem trece la ecuații logaritmice. Vom lua în considerare exemple de rezolvare a ecuațiilor logaritmice mai detaliat în articolul: „”. Nu ratați!

Dacă mai aveți întrebări despre soluție, scrieți-le în comentariile articolului.

Notă: am decis să obțin o educație dintr-o altă clasă de studii în străinătate ca opțiune.