Rješavanje logaritamskih nejednačina s promjenljivom u bazi. Manovljev rad "logaritamske nejednakosti na Jedinstvenom državnom ispitu"

Očuvanje vaše privatnosti nam je važno. Iz tog razloga smo razvili Politiku privatnosti koja opisuje kako koristimo i pohranjujemo vaše podatke. Pregledajte našu praksu privatnosti i javite nam ako imate pitanja.

Prikupljanje i korištenje ličnih podataka

Lični podaci odnose se na podatke koji se mogu koristiti za identifikaciju ili kontaktiranje određene osobe.

Od vas se može tražiti da unesete svoje lične podatke u bilo koje vrijeme kada nas kontaktirate.

U nastavku su navedeni neki primjeri vrsta ličnih podataka koje možemo prikupljati i kako ih možemo koristiti.

Koje lične podatke prikupljamo:

  • Kada podnesete prijavu na stranici, možemo prikupljati različite informacije, uključujući vaše ime, broj telefona, adresu Email itd.

Kako koristimo vaše lične podatke:

  • Lični podaci koje prikupljamo nam omogućavaju da vas kontaktiramo i informišemo o tome jedinstvene ponude, promocije i drugi događaji i nadolazeći događaji.
  • S vremena na vrijeme možemo koristiti vaše lične podatke za slanje važnih obavijesti i komunikacija.
  • Lične podatke možemo koristiti i za interne svrhe, kao što su provođenje revizija, analiza podataka i različita istraživanja kako bismo poboljšali usluge koje pružamo i dali vam preporuke u vezi s našim uslugama.
  • Ako učestvujete u nagradnoj igri, natjecanju ili sličnoj promociji, možemo koristiti informacije koje nam date za upravljanje takvim programima.

Otkrivanje informacija trećim licima

Podatke koje dobijemo od vas ne otkrivamo trećim licima.

Izuzeci:

  • Ako je potrebno - u skladu sa zakonom, sudskim postupkom, u sudskom postupku, i/ili na osnovu javnih zahtjeva ili zahtjeva državnih organa na teritoriji Ruske Federacije - otkriti vaše lične podatke. Takođe možemo otkriti informacije o vama ako utvrdimo da je takvo otkrivanje neophodno ili prikladno za sigurnosne, provođenje zakona ili druge svrhe od javnog značaja.
  • U slučaju reorganizacije, spajanja ili prodaje, možemo prenijeti lične podatke koje prikupimo na odgovarajuću treću stranu.

Zaštita ličnih podataka

Poduzimamo mjere opreza - uključujući administrativne, tehničke i fizičke - da zaštitimo vaše osobne podatke od gubitka, krađe i zloupotrebe, kao i neovlaštenog pristupa, otkrivanja, izmjene i uništenja.

Poštivanje vaše privatnosti na nivou kompanije

Kako bismo osigurali da su vaši lični podaci sigurni, našim zaposlenima prenosimo standarde privatnosti i sigurnosti i striktno provodimo praksu privatnosti.

Sa njima su unutrašnji logaritmi.

primjeri:

\(\log_3⁡x≥\log_3⁡9\)
\(\log_3⁡ ((x^2-3))< \log_3⁡{(2x)}\)
\(\log_(x+1)⁡((x^2+3x-7))>2\)
\(\lg^2⁡((x+1))+10≤11 \lg⁡((x+1))\)

Kako riješiti logaritamske nejednačine:

Trebalo bi nastojati da svedemo bilo koju logaritamsku nejednakost na oblik \(\log_a⁡(f(x)) ˅ \log_a(⁡g(x))\) (simbol \(˅\) znači bilo koji od ). Ovaj tip vam omogućava da se riješite logaritama i njihovih baza, čineći prijelaz na nejednakost izraza pod logaritmima, odnosno na oblik \(f(x) ˅ g(x)\).

Ali kada pravite ovu tranziciju postoji jedna vrlo važna suptilnost:
\(-\) ako je broj i veći je od 1, znak nejednakosti ostaje isti tokom prijelaza,
\(-\) ako je baza broj veći od 0, ali manji od 1 (leži između nule i jedan), onda bi predznak nejednakosti trebao promijeniti u suprotan, tj.

primjeri:

\(\log_2⁡((8-x))<1\)
ODZ: \(8-x>0\)
\(-x>-8\)
\(x<8\)

Rješenje:
\(\log\)\(_2\) \((8-x)<\log\)\(_2\) \({2}\)
\(8-x\)\(<\) \(2\)
\(8-2\(x>6\)
Odgovor: \((6;8)\)

\(\log\)\(_(0,5⁡)\) \((2x-4)\)≥\(\log\)\(_(0,5)\) ⁡\(((x+ 1))\)
ODZ: \(\početak(slučajevi)2x-4>0\\x+1 > 0\kraj(slučajevi)\)
\(\početak(slučajevi)2x>4\\x > -1\kraj(slučajevi)\) \(\Leftrightarrow\) \(\početak(slučajevi)x>2\\x > -1\kraj(slučajevi) \) \(\Leftrightarrow\) \(x\in(2;\infty)\)

Rješenje:
\(2x-4\)\(≤\) \(x+1\)
\(2x-x≤4+1\)
\(x≤5\)
Odgovor: \((2;5]\)

Veoma važno! U bilo kojoj nejednakosti, prijelaz sa oblika \(\log_a(⁡f(x)) ˅ \log_a⁡(g(x))\) na poređenje izraza pod logaritmima može se izvršiti samo ako:


Primjer . Riješite nejednakost: \(\log\)\(≤-1\)

Rješenje:

\(\log\) \(_(\frac(1)(3))⁡(\frac(3x-2)(2x-3))\)\(≤-1\)

Hajde da ispišemo ODZ.

ODZ: \(\frac(3x-2)(2x-3)\) \(>0\)

\(⁡\frac(3x-2-3(2x-3))(2x-3)\)\(≥\) \(0\)

Otvaramo zagrade i donosimo .

\(⁡\frac(-3x+7)(2x-3)\) \(≥\) \(0\)

Pomnožimo nejednakost sa \(-1\), ne zaboravljajući da obrnemo znak poređenja.

\(⁡\frac(3x-7)(2x-3)\) \(≤\) \(0\)

\(⁡\frac(3(x-\frac(7)(3)))(2(x-\frac(3)(2)))\)\(≤\) \(0\)

Konstruirajmo brojevnu pravu i označimo tačke \(\frac(7)(3)\) i \(\frac(3)(2)\) na njoj. Imajte na umu da je tačka uklonjena iz nazivnika, uprkos činjenici da nejednakost nije stroga. Činjenica je da ova tačka neće biti rješenje, jer će nas, kada se zamijeni u nejednakosti, dovesti do dijeljenja sa nulom.


\(x∈(\)\(\frac(3)(2)\) \(;\)\(\frac(7)(3)]\)

Sada crtamo ODZ na istoj numeričkoj osi i kao odgovor zapisujemo interval koji pada u ODZ.


Zapisujemo konačan odgovor.

odgovor: \(x∈(\)\(\frac(3)(2)\) \(;\)\(\frac(7)(3)]\)

Primjer . Riješite nejednačinu: \(\log^2_3⁡x-\log_3⁡x-2>0\)

Rješenje:

\(\log^2_3⁡x-\log_3⁡x-2>0\)

Hajde da ispišemo ODZ.

ODZ: \(x>0\)

Idemo do rješenja.

Rješenje: \(\log^2_3⁡x-\log_3⁡x-2>0\)

Ovdje imamo tipičnu kvadratno-logaritamsku nejednakost. Hajde da to uradimo.

\(t=\log_3⁡x\)
\(t^2-t-2>0\)

Proširujemo lijevu stranu nejednakosti u .

\(D=1+8=9\)
\(t_1= \frac(1+3)(2)=2\)
\(t_2=\frac(1-3)(2)=-1\)
\((t+1)(t-2)>0\)

Sada se moramo vratiti na originalnu varijablu - x. Da bismo to učinili, idemo na , koji ima isto rješenje, i napravimo obrnutu zamjenu.

\(\left[ \begin(sakupljeno) t>2 \\ t<-1 \end{gathered} \right.\) \(\Leftrightarrow\) \(\left[ \begin{gathered} \log_3⁡x>2\\\log_3⁡x<-1 \end{gathered} \right.\)

Transformirajte \(2=\log_3⁡9\), \(-1=\log_3⁡\frac(1)(3)\).

\(\left[ \begin(sakupljeno) \log_3⁡x>\log_39 \\ \log_3⁡x<\log_3\frac{1}{3} \end{gathered} \right.\)

Pređimo na poređenje argumenata. Osnove logaritma su veće od \(1\), pa se predznak nejednačina ne mijenja.

\(\left[ \begin(sakupljeno) x>9 \\ x<\frac{1}{3} \end{gathered} \right.\)

Kombinirajmo rješenje nejednačine i ODZ na jednoj slici.


Hajde da zapišemo odgovor.

odgovor: \((0; \frac(1)(3))∪(9;∞)\)

Mislite li da ima još vremena do Jedinstvenog državnog ispita i da ćete imati vremena da se pripremite? Možda je to tako. Ali u svakom slučaju, što ranije student počne sa pripremama, to će uspješnije polagati ispite. Danas smo odlučili posvetiti članak logaritamskim nejednačinama. Ovo je jedan od zadataka, što znači mogućnost da dobijete dodatni kredit.

Da li već znate šta je logaritam? Zaista se nadamo. Ali čak i ako nemate odgovor na ovo pitanje, to nije problem. Razumjeti šta je logaritam je vrlo jednostavno.

Zašto 4? Morate podići broj 3 na ovaj stepen da dobijete 81. Kada shvatite princip, možete nastaviti sa složenijim proračunima.

Prošli ste kroz nejednakosti prije nekoliko godina. I od tada se stalno susrećete s njima u matematici. Ako imate problema s rješavanjem nejednakosti, pogledajte odgovarajući odjeljak.
Sada kada smo se upoznali sa konceptima pojedinačno, pređimo na njihovo razmatranje općenito.

Najjednostavnija logaritamska nejednakost.

Najjednostavnije logaritamske nejednakosti nisu ograničene na ovaj primjer, postoje još tri, samo s različitim predznacima. Zašto je to potrebno? Da bolje razumijemo kako riješiti nejednakosti logaritmima. Sada dajmo primjereniji primjer, još uvijek prilično jednostavan, ostavit ćemo složene logaritamske nejednakosti za kasnije.

Kako to riješiti? Sve počinje od ODZ-a. Vrijedi znati više o tome ako želite uvijek lako riješiti bilo koju nejednakost.

Šta je ODZ? ODZ za logaritamske nejednakosti

Skraćenica označava raspon prihvatljivih vrijednosti. Ova formulacija se često pojavljuje u zadacima za Jedinstveni državni ispit. ODZ će vam biti od koristi ne samo u slučaju logaritamskih nejednakosti.

Pogledajte ponovo gornji primjer. Na osnovu njega ćemo razmotriti ODZ, kako biste razumjeli princip, a rješavanje logaritamskih nejednačina ne postavlja pitanja. Iz definicije logaritma slijedi da 2x+4 mora biti veće od nule. U našem slučaju to znači sljedeće.

Ovaj broj, po definiciji, mora biti pozitivan. Riješite gore prikazanu nejednakost. Ovo se čak može učiniti i usmeno, ovdje je jasno da X ne može biti manji od 2. Rješenje nejednakosti će biti definicija raspona prihvatljivih vrijednosti.
Sada pređimo na rješavanje najjednostavnije logaritamske nejednakosti.

Odbacujemo same logaritme sa obe strane nejednakosti. Šta nam ostaje kao rezultat? Jednostavna nejednakost.

Nije teško riješiti. X mora biti veći od -0,5. Sada kombinujemo dve dobijene vrednosti u sistem. dakle,

Ovo će biti raspon prihvatljivih vrijednosti za logaritamsku nejednakost koja se razmatra.

Zašto nam je uopšte potreban ODZ? Ovo je prilika da se iskorijene netačni i nemogući odgovori. Ako odgovor nije u rasponu prihvatljivih vrijednosti, onda odgovor jednostavno nema smisla. Ovo je vrijedno pamćenja dugo vremena, jer na Jedinstvenom državnom ispitu često postoji potreba za traženjem ODZ-a, a ne tiče se samo logaritamskih nejednakosti.

Algoritam za rješavanje logaritamske nejednakosti

Rješenje se sastoji od nekoliko faza. Prvo morate pronaći raspon prihvatljivih vrijednosti. U ODZ-u će biti dva značenja, o tome smo raspravljali gore. Zatim morate riješiti samu nejednakost. Metode rješenja su sljedeće:

  • metoda zamjene množitelja;
  • raspadanje;
  • metoda racionalizacije.

Ovisno o situaciji, vrijedi koristiti jednu od gore navedenih metoda. Pređimo direktno na rješenje. Otkrijmo najpopularniju metodu, koja je pogodna za rješavanje zadataka Jedinstvenog državnog ispita u gotovo svim slučajevima. Zatim ćemo pogledati metodu dekompozicije. Može vam pomoći ako naiđete na posebno nezgodnu nejednakost. Dakle, algoritam za rješavanje logaritamske nejednakosti.

Primjeri rješenja :

Nije uzalud uzeli upravo ovu nejednakost! Obratite pažnju na bazu. Zapamtite: ako je veći od jedan, predznak ostaje isti prilikom pronalaženja raspona prihvatljivih vrijednosti; u suprotnom, morate promijeniti predznak nejednakosti.

Kao rezultat, dobijamo nejednakost:

Sada lijevu stranu svedemo na oblik jednačine jednak nuli. Umjesto znaka “manje od” stavljamo “jednako” i rješavamo jednačinu. Tako ćemo pronaći ODZ. Nadamo se da nećete imati problema s rješavanjem ovako jednostavne jednačine. Odgovori su -4 i -2. To nije sve. Ove tačke morate prikazati na grafikonu, stavljajući “+” i “-”. Šta treba učiniti za ovo? Zamijenite brojeve iz intervala u izraz. Gdje su vrijednosti pozitivne, stavljamo "+".

Odgovori: x ne može biti veći od -4 i manji od -2.

Pronašli smo raspon prihvatljivih vrijednosti samo za lijevu stranu; sada moramo pronaći raspon prihvatljivih vrijednosti za desnu stranu. Ovo je mnogo lakše. Odgovor: -2. Presijecamo oba rezultujuća područja.

I tek sada počinjemo da se bavimo samom nejednakošću.

Pojednostavimo ga što je više moguće kako bismo ga lakše riješili.

Ponovo koristimo metodu intervala u rješenju. Preskočimo kalkulacije s tim je već sve jasno iz prethodnog primjera. Odgovori.

Ali ova metoda je prikladna ako logaritamska nejednakost ima iste baze.

Rješavanje logaritamskih jednačina i nejednačina sa različitim bazama zahtijeva početnu redukciju na istu bazu. Zatim koristite metodu opisanu gore. Ali postoji i komplikovaniji slučaj. Razmotrimo jednu od najsloženijih vrsta logaritamskih nejednakosti.

Logaritamske nejednakosti s promjenjivom bazom

Kako riješiti nejednakosti sa takvim karakteristikama? Da, i takvi se ljudi mogu naći na Jedinstvenom državnom ispitu. Rješavanje nejednakosti na sljedeći način također će imati blagotvoran učinak na vaš obrazovni proces. Pogledajmo pitanje detaljno. Odbacimo teoriju i pređimo odmah na praksu. Za rješavanje logaritamskih nejednakosti dovoljno je jednom se upoznati s primjerom.

Za rješavanje logaritamske nejednakosti prikazanog oblika potrebno je desnu stranu svesti na logaritam s istom osnovom. Princip liči na ekvivalentne prelaze. Kao rezultat, nejednakost će izgledati ovako.

Zapravo, ostaje samo da se napravi sistem nejednakosti bez logaritama. Koristeći metodu racionalizacije, prelazimo na ekvivalentan sistem nejednakosti. Shvatit ćete samo pravilo kada zamijenite odgovarajuće vrijednosti i pratite njihove promjene. Sistem će imati sljedeće nejednakosti.

Kada koristite metodu racionalizacije pri rješavanju nejednačina, morate zapamtiti sljedeće: jedan se mora oduzeti od baze, x, po definiciji logaritma, oduzima se od obje strane nejednakosti (desno slijeva), dva izraza se množe i postavljen pod originalnim predznakom u odnosu na nulu.

Dalje rješenje se provodi metodom intervala, ovdje je sve jednostavno. Važno je da shvatite razlike u metodama rješenja, tada će sve početi lako funkcionirati.

Postoje mnoge nijanse u logaritamskim nejednačinama. Najjednostavnije od njih je prilično lako riješiti. Kako možete riješiti svaki od njih bez problema? Već ste dobili sve odgovore u ovom članku. Sada je pred vama duga praksa. Konstantno vježbajte rješavanje raznih zadataka na ispitu i moći ćete dobiti najviši rezultat. Sretno u Vašem teškom zadatku!

Među čitavim nizom logaritamskih nejednakosti posebno se proučavaju nejednakosti sa promjenjivom bazom. Oni se rješavaju pomoću posebne formule, koja se iz nekog razloga rijetko uči u školi. U prezentaciji su predstavljena rješenja zadataka C3 Jedinstvenog državnog ispita iz matematike 2014. godine.

Skinuti:

Pregled:

Da biste koristili preglede prezentacija, kreirajte Google račun i prijavite se na njega: https://accounts.google.com


Naslovi slajdova:

Rješavanje logaritamskih nejednačina koje sadrže varijablu u bazi logaritma: metode, tehnike, ekvivalentni prijelazi, nastavnik matematike, srednja škola br. 143 Knyazkina T.V.

Među čitavim nizom logaritamskih nejednakosti posebno se proučavaju nejednakosti sa promjenjivom bazom. Oni se rješavaju pomoću posebne formule, koja se iz nekog razloga rijetko uči u školi: log k (x) f (x) ∨ log k (x) g (x) ⇒ (f (x) − g (x)) ( k ( x) − 1) ∨ 0 Umjesto polja za potvrdu “∨” možete staviti bilo koji znak nejednakosti: više ili manje. Glavna stvar je da su u obje nejednakosti predznaci isti. Na ovaj način se oslobađamo logaritama i problem svodimo na racionalnu nejednakost. Potonje je mnogo lakše riješiti, ali pri odbacivanju logaritma mogu se pojaviti dodatni korijeni. Da biste ih odsjekli, dovoljno je pronaći raspon prihvatljivih vrijednosti. Ne zaboravite ODZ logaritma! Sve što se odnosi na opseg prihvatljivih vrijednosti mora se posebno ispisati i riješiti: f (x) > 0; g(x) > 0; k(x) > 0; k(x) ≠ 1. Ove četiri nejednakosti čine sistem i moraju biti zadovoljene istovremeno. Kada se pronađe raspon prihvatljivih vrijednosti, ostaje samo da ga presječemo s rješenjem racionalna nejednakost- i odgovor je spreman.

Riješite nejednakost: Rješenje Prvo, napišemo OD logaritma. Prve dvije nejednakosti su zadovoljene automatski, ali će posljednja morati biti zapisana. Pošto je kvadrat broja jednak nuli ako i samo ako je sam broj jednak nuli, imamo: x 2 + 1 ≠ 1; x2 ≠ 0; x ≠ 0. Ispada da su ODZ logaritma svi brojevi osim nule: x ∈ (−∞0)∪(0 ;+ ∞). Sada rješavamo glavnu nejednakost: vršimo prijelaz iz logaritamske nejednakosti u racionalnu. Originalna nejednakost ima predznak “manje od”, što znači da rezultirajuća nejednakost također mora imati predznak “manje od”.

Imamo: (10 − (x 2 + 1)) · (x 2 + 1 − 1)

Transformisanje logaritamskih nejednakosti Često je originalna nejednakost drugačija od gornje. Ovo se lako može ispraviti korištenjem standardnih pravila za rad s logaritmima. Naime: Bilo koji broj se može predstaviti kao logaritam sa datom bazom; Zbir i razlika logaritama sa istim bazama mogu se zamijeniti jednim logaritmom. Zasebno, želio bih da vas podsjetim na raspon prihvatljivih vrijednosti. Budući da u izvornoj nejednakosti može biti nekoliko logaritama, potrebno je pronaći VA svakog od njih. Dakle, opšta shema za rješavanje logaritamskih nejednačina je sljedeća: Pronađite VA svakog logaritma uključenog u nejednakost; Nejednakost svesti na standardnu ​​koristeći formule za sabiranje i oduzimanje logaritama; Riješi rezultirajuću nejednačinu koristeći gornju shemu.

Rješavanje nejednakosti: Rješenje Nađimo domen definicije (DO) prvog logaritma: Riješimo metodom intervala. Pronađite nule brojilaca: 3 x − 2 = 0; x = 2/3. Zatim - nule nazivnika: x − 1 = 0; x = 1. Označite nule i predznake na koordinatnoj liniji:

Dobijamo x ∈ (−∞ 2/3) ∪ (1; +∞). Drugi logaritam će imati isti VA. Ako ne vjerujete, možete provjeriti. Sada transformirajmo drugi logaritam tako da u osnovi bude dvojka: Kao što vidite, trojke u osnovi i ispred logaritma su poništene. Dobili smo dva logaritma sa istom bazom. Zbrojite ih: log 2 (x − 1) 2

(f (x) − g (x)) (k (x) − 1)

Zanima nas presjek skupova, pa biramo intervale koji su zasjenjeni na obje strelice. Dobijamo: x ∈ (−1; 2/3) ∪ (1; 3) - sve tačke su izbušene. Odgovor: x ∈ (−1; 2/3)∪(1; 3)

Rješavanje USE-2014 zadataka tipa C3

Riješi sistem nejednačina. ODZ:  1) 2)

Riješite sistem nejednačina 3) -7 -3 - 5 x -1 + + + − − (nastavak)

Riješite sistem nejednačina 4) Zajednička odluka: i -7 -3 - 5 x -1 -8 7 log 2 129 (nastavak)

Riješite nejednačinu (nastavak) -3 3 -1 + − + − x 17 + -3 3 -1 x 17 -4

Riješite nejednakost Rješenje. ODZ: 

Riješite nejednačinu (nastavak)

Riješite nejednakost Rješenje. ODZ:  -2 1 -1 + − + − x + 2 -2 1 -1 x 2


LOGARITAMSKE NEJEDNAKOSTI U UPOTREBI

Sečin Mihail Aleksandrovič

Mala akademija nauka za studente Republike Kazahstan “Iskatel”

MBOU "Sovetskaya Srednja škola br. 1", 11. razred, grad. Sovetsky Sovetsky okrug

Gunko Ljudmila Dmitrijevna, učiteljica opštinske budžetske obrazovne ustanove „Sovetskaya srednja škola br. 1“

Sovetsky okrug

Cilj rada: proučavanje mehanizma za rješavanje logaritamskih nejednačina C3 nestandardnim metodama, identifikacija zanimljivosti logaritam

Predmet studija:

3) Naučiti rješavati specifične logaritamske nejednačine C3 koristeći nestandardne metode.

Rezultati:

Sadržaj

Uvod………………………………………………………………………………………………….4

Poglavlje 1. Istorijat izdanja…………………………………………………………5

Poglavlje 2. Zbirka logaritamskih nejednačina ………………………… 7

2.1. Ekvivalentni prijelazi i generalizirana metoda intervala…………… 7

2.2. Metoda racionalizacije………………………………………………………………………… 15

2.3. Nestandardna zamjena ................................................................ ............ ..... 22

2.4. Zadaci sa zamkama……………………………………………………27

Zaključak…………………………………………………………………………………………… 30

Književnost…………………………………………………………………………………. 31

Uvod

Ja sam 11. razred i planiram da upišem fakultet gdje je osnovni predmet matematika. Zbog toga mnogo radim sa problemima u dijelu C. U zadatku C3 trebam riješiti nestandardnu ​​nejednakost ili sistem nejednakosti, koji se obično odnosi na logaritme. Pripremajući se za ispit, susreo sam se s problemom nedostatka metoda i tehnika za rješavanje ispitnih logaritamskih nejednakosti ponuđenih u C3. Metode koje se proučavaju u školski program na ovu temu, ne daju osnovu za rješavanje C3 zadataka. Nastavnica matematike mi je predložila da samostalno radim C3 zadatke pod njenim vodstvom. Osim toga, zanimalo me je pitanje: da li se u životu susrećemo s logaritmima?

Imajući to na umu, odabrana je tema:

“Logaritmske nejednakosti na Jedinstvenom državnom ispitu”

Cilj rada: proučavanje mehanizma za rješavanje C3 problema korištenjem nestandardnih metoda, identifikujući zanimljive činjenice o logaritmu.

Predmet studija:

1) Pronađite potrebne informacije o nestandardnim metodama za rješavanje logaritamskih nejednačina.

2) Pronađite dodatne informacije o logaritmima.

3) Naučite rješavati specifične C3 probleme koristeći nestandardne metode.

Rezultati:

Praktični značaj leži u proširenju aparata za rješavanje C3 problema. Ovaj materijal se može koristiti na nekim časovima, za klupske i izborne časove matematike.

Proizvod projekta će biti zbirka „C3 Logaritamske nejednakosti sa rješenjima“.

Poglavlje 1. Pozadina

Tokom 16. vijeka, broj približnih proračuna se brzo povećavao, prvenstveno u astronomiji. Poboljšanje instrumenata, proučavanje kretanja planeta i drugi poslovi zahtijevali su kolosalne, ponekad višegodišnje, proračune. Astronomija je bila ugrožena stvarna opasnost utopiti se u neispunjenim proračunima. Poteškoće su se pojavile u drugim oblastima, na primjer, u poslovima osiguranja, bile su potrebne tablice složenih kamata različita značenja posto. Glavna poteškoća bilo je množenje i dijeljenje višecifrenih brojeva, posebno trigonometrijskih veličina.

Otkriće logaritama zasnivalo se na svojstvima progresija koje su bile dobro poznate do kraja 16. veka. O vezi između članova geometrijske progresije q, q2, q3, ... i aritmetička progresija njihovi pokazatelji su 1, 2, 3,... Arhimed je govorio u svom “Psalmitisu”. Drugi preduvjet je bio proširenje koncepta stepena na negativne i razlomke. Mnogi autori su istakli da množenje, dijeljenje, eksponencijacija i vađenje korijena u geometrijskoj progresiji odgovaraju u aritmetici - istim redoslijedom - sabiranju, oduzimanju, množenju i dijeljenju.

Ovdje je bila ideja o logaritmu kao eksponentu.

U istoriji razvoja doktrine logaritma prošlo je nekoliko faza.

Faza 1

Logaritme su izumili najkasnije 1594. nezavisno škotski baron Napier (1550-1617), a deset godina kasnije švajcarski mehaničar Bürgi (1552-1632). Obojica su željeli da pruže novo, pogodno sredstvo za aritmetička izračunavanja, iako su ovom problemu pristupili na različite načine. Napier je kinematički izrazio logaritamsku funkciju i time ušao u novo polje teorije funkcija. Bürgi je ostao na bazi razmatranja diskretnih progresija. Međutim, definicija logaritma za oba nije slična modernoj. Izraz "logaritam" (logaritam) pripada Napieru. Nastala je iz kombinacije grčke riječi: logos - “relacija” i ariqmo – “broj”, što je značilo “broj odnosa”. U početku je Napier koristio drugačiji termin: numeri artificiales - "umjetni brojevi", za razliku od numeri naturalts - "prirodni brojevi".

Godine 1615., u razgovoru s Henryjem Briggsom (1561-1631), profesorom matematike na Gresh koledžu u Londonu, Napier je predložio da se nula uzme kao logaritam od jedan, a 100 kao logaritam od deset, ili, što znači isto stvar, samo 1. Ovako su štampani decimalni logaritmi i prve logaritamske tablice. Kasnije je Briggsove tabele dopunio holandski knjižar i zaljubljenik u matematiku Adrian Flaccus (1600-1667). Napier i Briggs, iako su došli do logaritma ranije od svih ostalih, objavili su svoje tabele kasnije od ostalih - 1620. godine. Znakove log i log uveo je 1624. I. Kepler. Termin “prirodni logaritam” uveo je Mengoli 1659. godine, a zatim N. Mercator 1668. godine, a londonski učitelj John Speidel objavio je tabele prirodnih logaritama brojeva od 1 do 1000 pod nazivom “Novi logaritmi”.

Prve logaritamske tablice objavljene su na ruskom jeziku 1703. godine. Ali u svim logaritamskim tablicama bilo je grešaka u proračunu. Prve tabele bez grešaka objavljene su 1857. u Berlinu, obradio ih je njemački matematičar K. Bremiker (1804-1877).

Faza 2

Dalji razvoj teorije logaritama povezan je sa širom primjenom analitičke geometrije i infinitezimalnog računa. Do tada je uspostavljena veza između kvadrature jednakostranične hiperbole i prirodnog logaritma. Teorija logaritama ovog perioda povezana je sa imenima brojnih matematičara.

Njemački matematičar, astronom i inženjer Nikolaus Mercator u eseju

"Logarithmotechnics" (1668) daje niz koji daje ekspanziju ln(x+1) u

moći x:

Ovaj izraz tačno odgovara njegovom toku misli, iako, naravno, nije koristio znakove d, ..., već glomazniji simbolizam. Sa otkrićem logaritamskih nizova, tehnika izračunavanja logaritama se promijenila: počeli su se određivati ​​pomoću beskonačnih nizova. U svojim predavanjima “Elementarna matematika sa višeg gledišta”, održanim 1907-1908, F. Klein je predložio korištenje formule kao polazne tačke za izgradnju teorije logaritama.

Faza 3

Definicija logaritamske funkcije kao inverzne funkcije

eksponencijalni, logaritam kao eksponent ovu osnovu

nije formulisano odmah. Esej Leonharda Ojlera (1707-1783)

"Uvod u analizu infinitezimima" (1748) poslužio je daljem

razvoj teorije logaritamskih funkcija. dakle,

Prošle su 134 godine od kada su prvi put uvedeni logaritmi

(računajući od 1614. godine), prije nego što su matematičari došli do definicije

koncept logaritma, koji je sada osnova školskog predmeta.

Poglavlje 2. Zbirka logaritamskih nejednakosti

2.1. Ekvivalentni prijelazi i generalizirana metoda intervala.

Ekvivalentni prelazi

, ako je a > 1

, ako je 0 < а < 1

Metoda generaliziranog intervala

Ova metoda najuniverzalniji pri rješavanju nejednakosti gotovo bilo kojeg tipa. Dijagram rješenja izgleda ovako:

1. Dovedite nejednakost u oblik gdje je funkcija na lijevoj strani
, a na desnoj strani 0.

2. Pronađite domenu funkcije
.

3. Pronađite nule funkcije
, odnosno riješiti jednačinu
(a rješavanje jednadžbe je obično lakše nego rješavanje nejednačine).

4. Nacrtajte domen definicije i nule funkcije na brojevnoj pravoj.

5. Odredite znakove funkcije
na dobijenim intervalima.

6. Odaberite intervale u kojima funkcija uzima tražene vrijednosti i zapišite odgovor.

Primjer 1.

Rješenje:

Primijenimo metodu intervala

gdje

Za ove vrijednosti, svi izrazi pod logaritamskim predznacima su pozitivni.

odgovor:

Primjer 2.

Rješenje:

1st način . ADL je određen nejednakošću x> 3. Uzimanje logaritma za takve x u bazi 10, dobijamo

Posljednja nejednakost bi se mogla riješiti primjenom pravila ekspanzije, tj. poređenje faktora sa nulom. Međutim, u ovom slučaju je lako odrediti intervale konstantnog predznaka funkcije

stoga se može primijeniti intervalna metoda.

Funkcija f(x) = 2x(x- 3.5)lgǀ x- 3ǀ je kontinuirano na x> 3 i nestaje u tačkama x 1 = 0, x 2 = 3,5, x 3 = 2, x 4 = 4. Dakle, određujemo intervale konstantnog predznaka funkcije f(x):

odgovor:

2. metoda . Hajde da direktno primenimo ideje intervalne metode na originalnu nejednakost.

Da biste to učinili, podsjetite da su izrazi a b- a c i ( a - 1)(b- 1) imaju jedan znak. Zatim naša nejednakost u x> 3 je ekvivalentno nejednakosti

ili

Posljednja nejednakost rješava se metodom intervala

odgovor:

Primjer 3.

Rješenje:

Primijenimo metodu intervala

odgovor:

Primjer 4.

Rješenje:

Od 2 x 2 - 3x+ 3 > 0 za sve realne x, To

Za rješavanje druge nejednakosti koristimo metodu intervala

U prvoj nejednakosti vršimo zamjenu

onda dolazimo do nejednakosti 2y 2 - y - 1 < 0 и, применив метод интервалов, получаем, что решениями будут те y, koji zadovoljavaju nejednakost -0,5< y < 1.

Odakle, jer

dobijamo nejednakost

koji se sprovodi kada x, za koji 2 x 2 - 3x - 5 < 0. Вновь применим метод интервалов

Sada, uzimajući u obzir rješenje druge nejednakosti sistema, konačno dobijamo

odgovor:

Primjer 5.

Rješenje:

Nejednakost je ekvivalentna skupu sistema

ili

Koristimo metodu intervala ili

Odgovori:

Primjer 6.

Rješenje:

Sistem nejednakosti jednakosti

Neka

Onda y > 0,

i prva nejednakost

sistem poprima oblik

ili, odvijanje

kvadratni trinom faktorisan,

Primjenom intervalne metode na posljednju nejednakost,

vidimo da njegova rješenja zadovoljavaju uslov y> 0 će biti sve y > 4.

Dakle, originalna nejednakost je ekvivalentna sistemu:

Dakle, rješenja za nejednakost su sva

2.2. Metoda racionalizacije.

Ranija metoda racionalizacija nejednakosti nije riješena, nije se znalo. Ovo je "nova moderna" efikasan metod rješenja eksponencijalnih i logaritamskih nejednakosti" (citat iz knjige S.I. Kolesnikove)
A čak i da ga je učiteljica poznavala, postojao je strah - poznaje li ga stručnjak za Jedinstveni državni ispit i zašto ga ne daju u školi? Bilo je situacija kada je učiteljica rekla učeniku: „Odakle ti to sedi - 2.“
Sada se metoda svuda promoviše. A za stručnjake postoje smjernice povezane s ovom metodom, a u “Najpotpunijim izdanjima standardnih opcija...” u Rješenju C3 koristi se ova metoda.
DIVNA METODA!

"Čarobni sto"


U drugim izvorima

Ako a >1 i b >1, zatim log a b >0 i (a -1)(b -1)>0;

Ako a >1 i 0

ako je 0<a<1 и b >1, zatim log a b<0 и (a -1)(b -1)<0;

ako je 0<a<1 и 00 i (a -1)(b -1)>0.

Provedeno rezonovanje je jednostavno, ali značajno pojednostavljuje rješenje logaritamskih nejednačina.

Primjer 4.

log x (x 2 -3)<0

Rješenje:

Primjer 5.

log 2 x (2x 2 -4x +6)≤log 2 x (x 2 +x )

Rješenje:

Odgovori. (0; 0,5)U.

Primjer 6.

Za rješavanje ove nejednakosti umjesto nazivnika pišemo (x-1-1)(x-1), a umjesto brojnika pišemo proizvod (x-1)(x-3-9 + x).


Odgovori : (3;6)

Primjer 7.

Primjer 8.

2.3. Nestandardna zamjena.

Primjer 1.

Primjer 2.

Primjer 3.

Primjer 4.

Primjer 5.

Primjer 6.

Primjer 7.

log 4 (3 x -1)log 0,25

Napravimo zamjenu y=3 x -1; tada će ova nejednakost dobiti oblik

Log 4 log 0,25
.

Jer log 0,25 = -log 4 = -(log 4 y -log 4 16)=2-log 4 y , tada ćemo posljednju nejednakost prepisati kao 2log 4 y -log 4 2 y ≤.

Napravimo zamjenu t =log 4 y i dobijemo nejednakost t 2 -2t +≥0, čije su rješenje intervali - .

Dakle, da bismo pronašli vrijednosti y imamo skup od dvije jednostavne nejednakosti
Rješenje ovog skupa su intervali 0<у≤2 и 8≤у<+.

Prema tome, originalna nejednakost je ekvivalentna skupu dvije eksponencijalne nejednakosti,
odnosno agregati

Rješenje prve nejednakosti ovog skupa je interval 0<х≤1, решением второго – промежуток 2≤х<+. Dakle, originalna nejednakost je zadovoljena za sve vrijednosti x iz intervala 0<х≤1 и 2≤х<+.

Primjer 8.

Rješenje:

Sistem nejednakosti jednakosti

Rješenje druge nejednakosti koja definira ODZ bit će skup njih x,

za koji x > 0.

Za rješavanje prve nejednakosti vršimo zamjenu

Tada dobijamo nejednakost

ili

Skup rješenja posljednje nejednačine nalazi se metodom

intervali: -1< t < 2. Откуда, возвращаясь к переменной x, dobijamo

ili

Mnogo toga x, koji zadovoljavaju posljednju nejednakost

pripada ODZ-u ( x> 0), dakle, predstavlja rješenje sistema,

a time i originalna nejednakost.

odgovor:

2.4. Zadaci sa zamkama.

Primjer 1.

.

Rješenje. ODZ nejednakosti je sve x koji zadovoljava uslov 0 . Dakle, svi x su iz intervala 0

Primjer 2.

log 2 (2 x +1-x 2)>log 2 (2 x-1 +1-x)+1.. ? Poenta je da je drugi broj očigledno veći od

Zaključak

Nije bilo lako pronaći specifične metode za rješavanje C3 problema iz velikog broja različitih obrazovnih izvora. U toku obavljenog rada bio sam u mogućnosti da proučavam nestandardne metode za rješavanje složenih logaritamskih nejednačina. To su: ekvivalentni prelazi i generalizovana metoda intervala, metoda racionalizacije , nestandardna zamjena , zadaci sa zamkama na ODZ. Ove metode nisu uključene u školski program.

Različitim metodama riješio sam 27 nejednakosti predloženih na Jedinstvenom državnom ispitu u dijelu C, odnosno C3. Ove nejednakosti sa rješenjima po metodama činile su osnovu zbirke „C3 Logaritamske nejednakosti s rješenjima“, koja je postala projektni proizvod moje aktivnosti. Potvrđena je hipoteza koju sam postavio na početku projekta: C3 problemi se mogu efikasno riješiti ako poznajete ove metode.

Osim toga, otkrio sam zanimljive činjenice o logaritmima. Bilo mi je zanimljivo ovo raditi. Moji projektni proizvodi će biti korisni i studentima i nastavnicima.

Zaključci:

Time je cilj projekta postignut i problem riješen. I dobio sam najpotpunije i najraznovrsnije iskustvo projektnih aktivnosti u svim fazama rada. Tokom rada na projektu, moj glavni razvojni uticaj bio je na mentalnu kompetenciju, aktivnosti vezane za logičke mentalne operacije, razvoj kreativne kompetencije, lične inicijative, odgovornosti, istrajnosti i aktivnosti.

Garancija uspjeha pri izradi istraživačkog projekta za Stekao sam: značajno školsko iskustvo, sposobnost da dobijem informacije iz različitih izvora, provjerim njihovu pouzdanost i rangiram ih po važnosti.

Pored neposrednih predmetnih znanja iz matematike, proširio sam svoje praktične veštine u oblasti informatike, stekao nova znanja i iskustva iz oblasti psihologije, uspostavio kontakte sa kolegama iz razreda i naučio da sarađujem sa odraslima. Tokom projektnih aktivnosti razvijene su organizacione, intelektualne i komunikativne općeobrazovne vještine.

Književnost

1. Korjanov A. G., Prokofjev A. A. Sistemi nejednakosti sa jednom promenljivom (standardni zadaci C3).

2. Malkova A. G. Priprema za Jedinstveni državni ispit iz matematike.

3. Samarova S. S. Rješavanje logaritamskih nejednačina.

4. Matematika. Zbornik radova za obuku priredio A.L. Semenov i I.V. Yashchenko. -M.: MTsNMO, 2009. - 72 str.-