Stratul atmosferei cu cel mai mare volum de aer. Atmosfera Pământului: istoria aspectului și structurii

Limita sa superioară se află la o altitudine de 8-10 km în latitudini polare, 10-12 km în latitudinile temperate și 16-18 km în latitudini tropicale; mai scăzut iarna decât vara. Stratul inferior, principal al atmosferei. Conține mai mult de 80% din masa totală a aerului atmosferic și aproximativ 90% din toți vaporii de apă prezenți în atmosferă. Turbulența și convecția sunt foarte dezvoltate în troposferă, apar norii și se dezvoltă cicloni și anticicloni. Temperatura scade odată cu creșterea altitudinii cu un gradient vertical mediu de 0,65°/100 m

Următoarele sunt acceptate ca „condiții normale” la suprafața Pământului: densitate 1,2 kg/m3, presiune barometrică 101,35 kPa, temperatură plus 20 °C și umiditate relativă 50%. Acești indicatori condiționali au o semnificație pur inginerească.

Stratosferă

Un strat al atmosferei situat la o altitudine de 11 până la 50 km. Caracterizat printr-o ușoară modificare a temperaturii în stratul de 11-25 km (stratul inferior al stratosferei) și o creștere a temperaturii în stratul de 25-40 km de la −56,5 la 0,8 ° (stratul superior al stratosferei sau regiunea de inversare). Atinsă o valoare de aproximativ 273 K (aproape 0 ° C) la o altitudine de aproximativ 40 km, temperatura rămâne constantă până la o altitudine de aproximativ 55 km. Această regiune cu temperatură constantă se numește stratopauză și este granița dintre stratosferă și mezosferă.

Stratopauza

Stratul limită al atmosferei dintre stratosferă și mezosferă. În distribuția verticală a temperaturii există un maxim (aproximativ 0 °C).

Mezosfera

Mezopauza

Strat de tranziție între mezosferă și termosferă. Există un minim în distribuția verticală a temperaturii (aproximativ -90°C).

Linia Karman

Înălțimea deasupra nivelului mării, care este acceptată în mod convențional ca graniță între atmosfera Pământului și spațiu.

Termosferă

Limita superioară este de aproximativ 800 km. Temperatura se ridică la altitudini de 200-300 km, unde atinge valori de ordinul a 1500 K, după care rămâne aproape constantă până la altitudini mari. Sub influența radiațiilor solare ultraviolete și de raze X și radiații cosmice Are loc ionizarea aerului („aurore”) - principalele regiuni ale ionosferei se află în interiorul termosferei. La altitudini de peste 300 km predomină oxigenul atomic.

Exosfera (sfera de împrăștiere)

Până la o altitudine de 100 km, atmosfera este un amestec omogen, bine amestecat de gaze. În straturile superioare, distribuția gazelor după înălțime depinde de greutățile moleculare ale acestora; concentrația de gaze mai grele scade mai repede cu distanța de la suprafața Pământului. Datorită scăderii densității gazelor, temperatura scade de la 0 °C în stratosferă la -110 °C în mezosferă. in orice caz energie kinetică particulele individuale la altitudini de 200-250 km corespund unei temperaturi de ~1500°C. Peste 200 km se observă fluctuații semnificative ale temperaturii și densității gazelor în timp și spațiu.

La o altitudine de aproximativ 2000-3000 km, exosfera se transformă treptat în așa-numita în apropierea vidului spațial, care este umplut cu particule foarte rarefiate de gaz interplanetar, în principal atomi de hidrogen. Dar acest gaz reprezintă doar o parte din materia interplanetară. Cealaltă parte este formată din particule de praf de origine cometă și meteorică. Pe lângă particulele de praf extrem de rarefiate, în acest spațiu pătrunde radiațiile electromagnetice și corpusculare de origine solară și galactică.

Troposfera reprezintă aproximativ 80% din masa atmosferei, stratosfera - aproximativ 20%; masa mezosferei nu este mai mare de 0,3%, termosfera este mai mică de 0,05% din masa totală a atmosferei. Pe baza proprietăților electrice din atmosferă, se disting neutronosfera și ionosfera. În prezent se crede că atmosfera se extinde până la o altitudine de 2000-3000 km.

În funcție de compoziția gazului din atmosferă, ele emit homosferăȘi heterosferă. Heterosferă- Aceasta este zona în care gravitația afectează separarea gazelor, deoarece amestecul lor la o astfel de altitudine este neglijabil. Aceasta implică o compoziție variabilă a heterosferei. Sub ea se află o parte bine amestecată, omogenă a atmosferei, numită homosferă. Limita dintre aceste straturi se numește turbopauză, se află la o altitudine de aproximativ 120 km.

Proprietăți fizice

Grosimea atmosferei este de aproximativ 2000 - 3000 km de suprafața Pământului. Masa totală de aer este (5,1-5,3)?10 18 kg. Masa molară a aerului curat uscat este 28,966. Presiune la 0 °C la nivelul mării 101,325 kPa; temperatura critică -140,7 °C; presiune critica 3,7 MPa; C p 1,0048?10? J/(kg K)(la 0 °C), C v 0,7159 10? J/(kg K) (la 0 °C). Solubilitatea aerului în apă la 0°C este de 0,036%, la 25°C - 0,22%.

Proprietăți fiziologice și alte proprietăți ale atmosferei

Deja la o altitudine de 5 km deasupra nivelului mării, o persoană neantrenată începe să se confrunte cu înfometarea de oxigen și, fără adaptare, performanța unei persoane este redusă semnificativ. Zona fiziologică a atmosferei se termină aici. Respirația omului devine imposibilă la o altitudine de 15 km, deși până la aproximativ 115 km atmosfera conține oxigen.

Atmosfera ne furnizează oxigenul necesar pentru respirație. Cu toate acestea, din cauza scăderii presiunii totale a atmosferei, pe măsură ce vă ridicați la altitudine, presiunea parțială a oxigenului scade în mod corespunzător.

Plămânii umani conțin în mod constant aproximativ 3 litri de aer alveolar. Presiunea parțială a oxigenului în aerul alveolar la presiunea atmosferică normală este de 110 mmHg. Art., presiune dioxid de carbon- 40 mm Hg. Art., si vapori de apa - 47 mm Hg. Artă. Odată cu creșterea altitudinii, presiunea oxigenului scade, iar presiunea totală a vaporilor de apă și dioxid de carbon din plămâni rămâne aproape constantă - aproximativ 87 mm Hg. Artă. Furnizarea de oxigen a plămânilor se va opri complet atunci când presiunea aerului ambiant devine egală cu această valoare.

La o altitudine de aproximativ 19-20 km, presiunea atmosferică scade la 47 mm Hg. Artă. Prin urmare, la această altitudine, apa și lichidul interstițial încep să fiarbă în corpul uman. În afara cabinei presurizate la aceste altitudini, moartea are loc aproape instantaneu. Astfel, din punctul de vedere al fiziologiei umane, „spațiul” începe deja la o altitudine de 15-19 km.

Straturile dense de aer - troposfera și stratosfera - ne protejează de efectele dăunătoare ale radiațiilor. Cu suficientă rarefiere a aerului, la altitudini mai mari de 36 km, radiațiile ionizante - razele cosmice primare - au un efect intens asupra organismului; La altitudini de peste 40 km, partea ultravioletă a spectrului solar este periculoasă pentru oameni.

Pe măsură ce ne ridicăm la o înălțime din ce în ce mai mare deasupra suprafeței Pământului, fenomene cunoscute observate în straturile inferioare ale atmosferei, cum ar fi propagarea sunetului, apariția ridicării și rezistenței aerodinamice, transferul de căldură prin convecție etc., slăbesc treptat și apoi dispar complet. .

În straturile rarefiate de aer, propagarea sunetului este imposibilă. Până la altitudini de 60-90 km, este încă posibilă utilizarea rezistenței aerului și a portanței pentru zborul aerodinamic controlat. Însă pornind de la altitudini de 100-130 km, conceptele de număr M și bariera sonoră, familiare fiecărui pilot, își pierd sensul; acolo trece linia convențională Karman, dincolo de care începe sfera zborului pur balistic, care nu poate decât controlată cu ajutorul forțelor reactive.

La altitudini de peste 100 km, atmosfera este lipsită de o altă proprietate remarcabilă - capacitatea de a absorbi, conduce și transmite energie termică prin convecție (adică prin amestecarea aerului). Aceasta înseamnă că diverse elemente ale echipamentului, echipamente orbitale statie spatiala nu se va putea răci afară în modul în care se face de obicei într-un avion - cu ajutorul jeturilor de aer și radiatoarelor de aer. La această altitudine, ca și în spațiu în general, singura modalitate de a transfera căldură este radiația termică.

Compoziția atmosferică

Atmosfera Pământului este formată în principal din gaze și diverse impurități (praf, picături de apă, cristale de gheață, săruri marine, produse de ardere).

Concentrația gazelor care formează atmosfera este aproape constantă, cu excepția apei (H 2 O) și a dioxidului de carbon (CO 2).

Compoziția aerului uscat
Gaz Conţinut
în volum,%
Conţinut
după greutate,%
Azot 78,084 75,50
Oxigen 20,946 23,10
Argon 0,932 1,286
Apă 0,5-4 -
Dioxid de carbon 0,032 0,046
Neon 1,818×10 −3 1,3×10 −3
Heliu 4,6×10 −4 7,2×10 −5
Metan 1,7×10 −4 -
Krypton 1,14×10 −4 2,9×10 −4
Hidrogen 5×10 −5 7,6×10 −5
Xenon 8,7×10 −6 -
Oxid de azot 5×10 −5 7,7×10 −5

Pe lângă gazele indicate în tabel, atmosfera conține SO 2, NH 3, CO, ozon, hidrocarburi, HCl, vapori, I 2, precum și multe alte gaze în cantități mici. Troposfera conține în mod constant o cantitate mare de particule solide și lichide în suspensie (aerosoli).

Istoria formării atmosferice

Conform celei mai comune teorii, atmosfera Pământului a avut patru compoziții diferite de-a lungul timpului. Inițial, a constat din gaze ușoare (hidrogen și heliu) captate din spațiul interplanetar. Acesta este așa-numitul atmosfera primara(acum aproximativ patru miliarde de ani). În etapa următoare, activitatea vulcanică activă a dus la saturarea atmosferei cu alte gaze decât hidrogenul (dioxid de carbon, amoniac, vapori de apă). Așa s-a format atmosfera secundara(aproximativ trei miliarde de ani înainte de ziua de azi). Această atmosferă era reconfortantă. În plus, procesul de formare a atmosferei a fost determinat de următorii factori:

  • scurgerea gazelor ușoare (hidrogen și heliu) în spațiul interplanetar;
  • reacții chimice care apar în atmosferă sub influența radiațiilor ultraviolete, a descărcărilor de fulgere și a altor factori.

Treptat, acești factori au dus la formare atmosfera tertiara, caracterizată printr-un conținut mult mai scăzut de hidrogen și un conținut mult mai mare de azot și dioxid de carbon (format ca urmare a reacții chimice din amoniac şi hidrocarburi).

Azot

Educaţie cantitate mare N 2 se datorează oxidării atmosferei de amoniac-hidrogen de către O 2 molecular, care a început să vină de la suprafața planetei ca urmare a fotosintezei, începând cu 3 miliarde de ani. N2 este, de asemenea, eliberat în atmosferă ca urmare a denitrificării nitraților și a altor compuși care conțin azot. Azotul este oxidat de ozon la NO în straturile superioare atmosfera.

Azotul N 2 reacționează numai în condiții specifice (de exemplu, în timpul descărcării unui fulger). Oxidarea azotului molecular de către ozon în timpul descărcărilor electrice este utilizată în producția industrială de îngrășăminte cu azot. Cianobacteriile (alge albastru-verzi) și bacteriile nodulare care formează simbioză rizobială cu plantele leguminoase, așa-numitele, o pot oxida cu un consum redus de energie și o pot transforma într-o formă biologic activă. gunoi de grajd verde.

Oxigen

Compoziția atmosferei a început să se schimbe radical odată cu apariția organismelor vii pe Pământ, ca urmare a fotosintezei, însoțită de eliberarea de oxigen și absorbția de dioxid de carbon. Inițial, oxigenul a fost cheltuit pentru oxidarea compușilor reduși - amoniac, hidrocarburi, formă feroasă de fier conținută în oceane etc. La sfârșitul acestei etape, conținutul de oxigen din atmosferă a început să crească. Treptat, s-a format o atmosferă modernă cu proprietăți oxidante. Deoarece a provocat schimbări majore și abrupte în multe procese care au loc în atmosferă, litosferă și biosferă, evenimentul a fost numit dezastrul oxigenului.

Dioxid de carbon

Conținutul de CO 2 din atmosferă depinde de activitatea vulcanică și de procesele chimice din învelișul pământului, dar mai ales - de intensitatea biosintezei și descompunerii materiei organice din biosfera Pământului. Aproape întreaga biomasă actuală a planetei (aproximativ 2,4 × 10 12 tone) se formează din cauza dioxidului de carbon, azotului și vaporilor de apă conținute în aerul atmosferic. Organele îngropate în ocean, mlaștini și păduri se transformă în cărbune, petrol și gaze naturale. (vezi ciclul geochimic al carbonului)

gaze nobile

Poluarea aerului

ÎN În ultima vreme Omul a început să influențeze evoluția atmosferei. Rezultatul activităților sale a fost o creștere constantă semnificativă a conținutului de dioxid de carbon din atmosferă, datorită arderii combustibililor hidrocarburi acumulați în erele geologice anterioare. Cantități uriașe de CO 2 sunt consumate în timpul fotosintezei și absorbite de oceanele lumii. Acest gaz pătrunde în atmosferă datorită descompunerii rocilor carbonatice și materie organică origine vegetală și animală, precum și datorită vulcanismului și activității industriale umane. În ultimii 100 de ani, conținutul de CO 2 din atmosferă a crescut cu 10%, cea mai mare parte (360 de miliarde de tone) provenind din arderea combustibilului. Dacă ritmul de creștere a arderii combustibilului continuă, atunci în următorii 50-60 de ani cantitatea de CO 2 din atmosferă se va dubla și ar putea duce la schimbări climatice globale.

Arderea combustibilului este principala sursă de gaze poluante (CO, SO2). Dioxidul de sulf este oxidat de oxigenul atmosferic la SO 3 în straturile superioare ale atmosferei, care la rândul său interacționează cu apa și vaporii de amoniac și acidul sulfuric (H 2 SO 4 ) și sulfatul de amoniu ((NH 4 ) 2 SO 4 rezultați. ) sunt returnate la suprafața Pământului sub forma așa-numitelor. ploaie acidă. Utilizarea motoarelor cu ardere internă conduce la o poluare atmosferică semnificativă cu oxizi de azot, hidrocarburi și compuși de plumb (tetraetil plumb Pb(CH 3 CH 2) 4)).

Poluarea cu aerosoli a atmosferei este cauzată atât de cauze naturale (erupții vulcanice, furtuni de praf, antrenare de picături de apă de mare și polen de plante etc.) cât și activitate economică oameni (exploatarea minereului și materiale de construcții, arderea combustibilului, producția de ciment etc.). Emisia intensivă la scară largă de particule solide în atmosferă este una dintre cele mai importante motive posibile schimbări ale climei planetei.

Literatură

  1. V. V. Parin, F. P. Kosmolinsky, B. A. Dushkov „Biologie și medicină spațială” (ediția a II-a, revizuită și extinsă), M.: „Prosveshchenie”, 1975, 223 p.
  2. N. V. Gusakova „Chimie” mediu inconjurator", Rostov-pe-Don: Phoenix, 2004, 192 cu ISBN 5-222-05386-5
  3. Sokolov V. A.. Geochimia gazelor naturale, M., 1971;
  4. McEwen M., Phillips L.. Atmospheric Chemistry, M., 1978;
  5. Wark K., Warner S., Poluarea aerului. Surse și control, trad. din engleză, M.. 1980;
  6. Monitorizarea poluării de fond medii naturale. V. 1, L., 1982.

Vezi si

Legături

Atmosfera Pământului

Straturi ale atmosferei în ordine de la suprafața Pământului

Rolul atmosferei în viața Pământului

Atmosfera este sursa de oxigen pe care oamenii o respiră. Cu toate acestea, pe măsură ce vă ridicați la altitudine, presiunea atmosferică totală scade, ceea ce duce la o scădere a presiunii parțiale a oxigenului.

Plămânii umani conțin aproximativ trei litri de aer alveolar. Dacă presiunea atmosferică este normală, atunci presiunea parțială a oxigenului în aerul alveolar va fi de 11 mm Hg. Art., presiunea dioxidului de carbon - 40 mm Hg. Art., si vapori de apa - 47 mm Hg. Artă. Pe măsură ce altitudinea crește, presiunea oxigenului scade, iar presiunea totală a vaporilor de apă și a dioxidului de carbon din plămâni va rămâne constantă - aproximativ 87 mm Hg. Artă. Când presiunea aerului este egală cu această valoare, oxigenul nu va mai curge în plămâni.

Din cauza scăderii presiunii atmosferice la o altitudine de 20 km, aici vor fierbe apa și lichidul interstițial din corpul uman. Dacă nu folosiți o cabină presurizată, la o astfel de înălțime o persoană va muri aproape instantaneu. Prin urmare, din punctul de vedere al caracteristicilor fiziologice ale corpului uman, „spațiul” își are originea de la o înălțime de 20 km deasupra nivelului mării.

Rolul atmosferei în viața Pământului este foarte mare. De exemplu, datorită straturilor dense de aer - troposfera și stratosfera, oamenii sunt protejați de expunerea la radiații. În spațiu, în aer rarefiat, la o altitudine de peste 36 km, acționează radiațiile ionizante. La o altitudine de peste 40 km - ultraviolete.

Când se ridică deasupra suprafeței Pământului la o înălțime de peste 90-100 km, se va observa o slăbire treptată și apoi dispariția completă a fenomenelor familiare oamenilor observate în stratul inferior atmosferic:

Niciun sunet nu circulă.

Nu există forță aerodinamică sau rezistență.

Căldura nu este transferată prin convecție etc.

Stratul atmosferic protejează Pământul și toate organismele vii de radiațiile cosmice, de meteoriți și este responsabil pentru reglarea fluctuațiilor sezoniere de temperatură, echilibrând și nivelând ciclurile zilnice. În absența unei atmosfere pe Pământ, temperaturile zilnice ar fluctua cu +/-200C˚. Stratul atmosferic este un „tampon” dătător de viață între suprafața pământului și spațiu, un purtător de umiditate și căldură; procesele de fotosinteză și schimb de energie au loc în atmosferă - cele mai importante procese ale biosferei.

Straturi ale atmosferei în ordine de la suprafața Pământului

Atmosfera este o structură stratificată formată din următoarele straturi ale atmosferei în ordine de la suprafața Pământului:

troposfera.

Stratosferă.

Mezosfera.

Termosferă.

Exosfera

Fiecare strat nu are granițe clare între ele, iar înălțimea lor este afectată de latitudine și anotimpuri. Această structură stratificată s-a format ca urmare a schimbărilor de temperatură la diferite altitudini. Datorită atmosferei, vedem stele sclipitoare.

Structura atmosferei terestre pe straturi:

În ce constă atmosfera Pământului?

Fiecare strat atmosferic diferă ca temperatură, densitate și compoziție. Grosimea totală a atmosferei este de 1,5-2,0 mii km. În ce constă atmosfera Pământului? În prezent, este un amestec de gaze cu diverse impurități.

troposfera

Structura atmosferei Pământului începe cu troposfera, care este partea inferioară a atmosferei cu o altitudine de aproximativ 10-15 km. Aici se concentrează cea mai mare parte a aerului atmosferic. Caracteristică troposfera - temperatura scade cu 0,6 ˚C pe măsură ce te ridici la fiecare 100 de metri. Troposfera concentrează aproape toți vaporii de apă atmosferici și aici se formează norii.

Înălțimea troposferei se schimbă zilnic. În plus, valoarea sa medie variază în funcție de latitudinea și anotimpul anului. Înălțimea medie a troposferei deasupra polilor este de 9 km, deasupra ecuatorului - aproximativ 17 km. Temperatura medie anuală a aerului deasupra ecuatorului este aproape de +26 ˚C, iar deasupra Polului Nord -23 ˚C. Linia superioară a troposferei de deasupra ecuatorului are o temperatură medie anuală de aproximativ -70 ˚C și mai sus polul Nord vara -45 ˚C iar iarna -65 ˚C. Astfel, cu cât altitudinea este mai mare, cu atât temperatura este mai scăzută. Razele soarelui trec nestingherite prin troposferă, încălzind suprafața Pământului. Căldura emisă de soare este reținută de dioxid de carbon, metan și vapori de apă.

Stratosferă

Deasupra stratului de troposferă se află stratosfera, care are 50-55 km înălțime. Particularitatea acestui strat este că temperatura crește odată cu înălțimea. Între troposferă și stratosferă se află un strat de tranziție numit tropopauză.

De la aproximativ o altitudine de 25 de kilometri, temperatura stratului stratosferic începe să crească și, la atingerea altitudinii maxime de 50 km, capătă valori de la +10 la +30 ˚C.

Există foarte puțini vapori de apă în stratosferă. Uneori, la o altitudine de aproximativ 25 km, puteți găsi nori destul de subțiri, care sunt numiți „nori de perle”. Ziua nu sunt vizibile, dar noaptea strălucesc datorită iluminării soarelui, care se află sub orizont. Compoziția norilor nacru constă din picături de apă suprarăcite. Stratosfera este formată în principal din ozon.

Mezosfera

Înălțimea stratului mezosferă este de aproximativ 80 km. Aici, pe măsură ce crește, temperatura scade și în partea de sus ajunge la valori de câteva zeci de C˚ sub zero. În mezosferă pot fi observați și nori, care se presupune că sunt formați din cristale de gheață. Acești nori sunt numiți „noctilucenți”. Mezosfera este caracterizată de cea mai rece temperatură din atmosferă: de la -2 la -138 ˚C.

Termosferă

Acest strat atmosferic și-a căpătat numele datorită temperaturilor ridicate. Termosfera este formată din:

ionosferă.

Exosfera.

Ionosfera este caracterizată de aer rarefiat, fiecare centimetru din care la o altitudine de 300 km este format din 1 miliard de atomi și molecule, iar la o altitudine de 600 km - mai mult de 100 de milioane.

De asemenea, ionosfera se caracterizează prin ionizare ridicată a aerului. Acești ioni sunt alcătuiți din atomi de oxigen încărcați, molecule încărcate de atomi de azot și electroni liberi.

Exosfera

Stratul exosferic începe la o altitudine de 800-1000 km. Particulele de gaz, în special cele ușoare, se deplasează aici cu o viteză extraordinară, depășind forța gravitației. Astfel de particule, datorită lor mișcare rapidă, zboară din atmosferă în spațiul cosmic și se disipează. Prin urmare, exosfera se numește sfera de dispersie. În mare parte, atomii de hidrogen, care alcătuiesc cele mai înalte straturi ale exosferei, zboară în spațiu. Datorită particulelor din atmosfera superioară și particulelor vântului solar, putem vedea aurora boreală.

Sateliții și rachetele geofizice au făcut posibilă stabilirea prezenței în straturile superioare ale atmosferei a centurii de radiații a planetei, constând din particule încărcate electric - electroni și protoni.

Învelișul gazos care înconjoară planeta noastră Pământ, cunoscut sub numele de atmosferă, este format din cinci straturi principale. Aceste straturi își au originea pe suprafața planetei, de la nivelul mării (uneori mai jos) și se ridică până la spațiul cosmicîn următoarea secvență:

  • troposfera;
  • Stratosferă;
  • Mezosfera;
  • Termosferă;
  • Exosfera.

Diagrama principalelor straturi ale atmosferei terestre

Între fiecare dintre aceste cinci straturi principale se află zone de tranziție numite „pauze” în care apar modificări ale temperaturii, compoziției și densității aerului. Împreună cu pauzele, atmosfera Pământului include un total de 9 straturi.

Troposfera: unde apare vremea

Dintre toate straturile atmosferei, troposfera este cea cu care suntem cel mai familiar (fie că îți dai seama sau nu), din moment ce trăim pe fundul ei - suprafața planetei. Acesta învăluie suprafața Pământului și se extinde în sus pe câțiva kilometri. Cuvântul troposferă înseamnă „schimbarea globului”. Un nume foarte potrivit, deoarece acest strat este locul unde apare vremea noastră de zi cu zi.

Pornind de la suprafața planetei, troposfera se ridică la o înălțime de 6 până la 20 km. Treimea inferioară a stratului, cea mai apropiată de noi, conține 50% din toate gazele atmosferice. Aceasta este singura parte din întreaga atmosferă care respiră. Datorită faptului că aerul este încălzit de jos de suprafața pământului, care absoarbe energia termică a Soarelui, temperatura și presiunea troposferei scad odată cu creșterea altitudinii.

În partea de sus există un strat subțire numit tropopauză, care este doar un tampon între troposferă și stratosferă.

Stratosfera: casa ozonului

Stratosfera este următorul strat al atmosferei. Se întinde de la 6-20 km până la 50 km deasupra suprafeței Pământului. Acesta este stratul în care zboară majoritatea avioanelor comerciale și călătoresc baloanele cu aer cald.

Aici aerul nu curge în sus și în jos, ci se mișcă paralel cu suprafața în curenți de aer foarte mari. Pe măsură ce te ridici, temperatura crește, datorită abundenței de ozon natural (O3), un produs secundar al radiației solare și al oxigenului, care are capacitatea de a absorbi razele ultraviolete dăunătoare ale soarelui (orice creștere a temperaturii cu altitudinea este cunoscută în meteorologie). ca o „inversie”).

Deoarece stratosfera are temperaturi mai calde în partea de jos și temperaturi mai reci în partea de sus, convecția (mișcarea verticală a maselor de aer) este rară în această parte a atmosferei. De fapt, din stratosferă puteți vedea o furtună care dezlănțuie în troposferă, deoarece stratul acționează ca un capac de convecție care împiedică pătrunderea norilor de furtună.

După stratosferă există din nou un strat tampon, numit de data aceasta stratopauză.

Mezosfera: atmosfera mijlocie

Mezosfera este situată la aproximativ 50-80 km de suprafața Pământului. Mezosfera superioară este cel mai rece loc natural de pe Pământ, unde temperaturile pot scădea sub -143°C.

Termosfera: atmosfera superioara

După mezosferă și mezopauză vine termosfera, situată între 80 și 700 km deasupra suprafeței planetei, și conține mai puțin de 0,01% din aerul total din învelișul atmosferic. Temperaturile aici ajung până la +2000° C, dar din cauza subțirii extreme a aerului și a lipsei moleculelor de gaz pentru a transfera căldura, aceste temperaturi ridicate sunt percepute ca fiind foarte reci.

Exosfera: granița dintre atmosferă și spațiu

La o altitudine de aproximativ 700-10.000 km deasupra suprafeței pământului se află exosfera - marginea exterioară a atmosferei, învecinată cu spațiul. Aici sateliții meteo orbitează în jurul Pământului.

Dar ionosfera?

Ionosfera nu este un strat separat, dar de fapt termenul este folosit pentru a se referi la atmosfera între 60 și 1000 km altitudine. Include părțile superioare ale mezosferei, întreaga termosferă și o parte a exosferei. Ionosfera își primește numele deoarece este în această parte a atmosferei unde radiațiile de la Soare sunt ionizate pe măsură ce trece prin ele. campuri magnetice Pământul pe

Compoziția atmosferei.Învelișul de aer al planetei noastre - atmosfera protejează suprafața pământului de efectele nocive ale radiațiilor ultraviolete de la Soare asupra organismelor vii. Ea protejează Pământul de particule cosmice- praf și meteoriți.

Atmosfera este formată dintr-un amestec mecanic de gaze: 78% din volumul său este azot, 21% oxigen și mai puțin de 1% este heliu, argon, cripton și alte gaze inerte. Cantitatea de oxigen și azot din aer este practic neschimbată, deoarece azotul aproape că nu se combină cu alte substanțe, iar oxigenul, care, deși este foarte activ și consumat pentru respirație, oxidare și ardere, este reîncărcat constant de plante.

Până la o altitudine de aproximativ 100 km, procentul acestor gaze rămâne practic neschimbat. Acest lucru se datorează faptului că aerul este amestecat în mod constant.

Pe lângă gazele menționate, atmosfera conține circa 0,03% dioxid de carbon, care de obicei este concentrat în apropierea suprafeței pământului și este distribuit neuniform: în orașe, centre industriale și zone de activitate vulcanică, cantitatea acestuia crește.

Există întotdeauna o anumită cantitate de impurități în atmosferă - vapori de apă și praf. Conținutul de vapori de apă depinde de temperatura aerului: cu cât temperatura este mai mare, cu atât aerul poate reține mai mulți vapori. Datorită prezenței apei vaporoase în aer, sunt posibile fenomene atmosferice precum curcubeele, refracția luminii solare etc.

Praful intră în atmosferă în timpul erupțiilor vulcanice, furtunilor de nisip și praf, în timpul arderii incomplete a combustibilului la centralele termice etc.

Structura atmosferei. Densitatea atmosferei se modifică odată cu altitudinea: este cea mai mare la suprafața Pământului și scade pe măsură ce se ridică. Astfel, la o altitudine de 5,5 km, densitatea atmosferei este de 2 ori, iar la o altitudine de 11 km, este de 4 ori mai mică decât în ​​stratul de suprafață.

În funcție de densitatea, compoziția și proprietățile gazelor, atmosfera este împărțită în cinci straturi concentrice (Fig. 34).

Orez. 34. Secțiunea verticală a atmosferei (stratificarea atmosferei)

1. Stratul inferior se numește troposfera. Limita sa superioară trece la o altitudine de 8-10 km la poli și 16-18 km la ecuator. Troposfera conține până la 80% din masa totală a atmosferei și aproape toți vaporii de apă.

Temperatura aerului din troposferă scade odată cu înălțimea cu 0,6 °C la fiecare 100 m și la limita sa superioară este de -45-55 °C.

Aerul din troposferă este amestecat constant și se mișcă în direcții diferite. Doar aici se observă cețe, ploi, ninsori, furtuni, furtuni și alte fenomene meteorologice.

2. Situat deasupra stratosferă, care se extinde la o altitudine de 50-55 km. Densitatea și presiunea aerului în stratosferă sunt neglijabile. Aerul subțire este format din aceleași gaze ca și în troposferă, dar conține mai mult ozon. Cea mai mare concentrație de ozon se observă la o altitudine de 15-30 km. Temperatura din stratosferă crește odată cu altitudinea și la limita sa superioară atinge 0 °C și mai mult. Acest lucru se datorează faptului că ozonul absoarbe energia undelor scurte de la soare, determinând încălzirea aerului.

3. Se află deasupra stratosferei mezosfera, extinzându-se la o altitudine de 80 km. Acolo temperatura scade din nou și ajunge la -90 °C. Densitatea aerului acolo este de 200 de ori mai mică decât la suprafața Pământului.

4. Deasupra mezosferei se află termosferă(de la 80 la 800 km). Temperatura din acest strat crește: la o altitudine de 150 km până la 220 °C; la o altitudine de 600 km până la 1500 °C. Gazele atmosferice (azot și oxigen) sunt în stare ionizată. Sub influența radiației solare cu unde scurte, electronii individuali sunt separați de învelișurile atomilor. Ca rezultat, în acest strat - ionosferă apar straturi de particule încărcate. Stratul lor cel mai dens este situat la o altitudine de 300-400 km. Datorită densității scăzute, razele soarelui nu sunt împrăștiate acolo, așa că cerul este negru, stelele și planetele strălucesc puternic pe el.

În ionosferă există lumini polare, Se formează curenți electrici puternici care provoacă perturbări în câmpul magnetic al Pământului.

5. Peste 800 km este învelișul exterior - exosfera. Viteza de mișcare a particulelor individuale în exosferă se apropie de critică - 11,2 mm/s, astfel încât particulele individuale pot depăși gravitația și pot scăpa în spațiul cosmic.

Sensul atmosferei. Rolul atmosferei în viața planetei noastre este excepțional de mare. Fără ea, Pământul ar fi mort. Atmosfera protejează suprafața Pământului de încălzirea și răcirea extremă. Efectul său poate fi asemănat cu rolul sticlei în sere: permiterea trecerii razelor solare și prevenirea pierderilor de căldură.

Atmosfera protejează organismele vii de radiațiile de unde scurte și corpusculare de la Soare. Atmosfera este mediul în care au loc fenomenele meteorologice, cu care totul este legat activitate umana. Studiul acestei cochilii se realizează la stațiile meteorologice. Zi și noapte, în orice vreme, meteorologii monitorizează starea stratului inferior al atmosferei. De patru ori pe zi, iar la multe stații pe oră, se măsoară temperatura, presiunea, umiditatea aerului, notează înnorabilitatea, direcția și viteza vântului, cantitatea de precipitații, fenomenele electrice și sonore din atmosferă. Stațiile meteorologice sunt amplasate peste tot: în Antarctica și în pădurile tropicale, pe munti inalti iar în vastele întinderi ale tundrei. De asemenea, se efectuează observații asupra oceanelor de pe nave special construite.

Din anii 30. secolul XX observaţiile au început în atmosfera liberă. Au început să lanseze radiosonde care se ridică la o înălțime de 25-35 km și, folosind echipamente radio, transmit pe Pământ informații despre temperatură, presiune, umiditatea aerului și viteza vântului. În zilele noastre, rachetele meteorologice și sateliții sunt de asemenea folosiți pe scară largă. Acestea din urmă au instalații de televiziune care transmit imagini ale suprafeței pământului și norilor.

| |
5. Învelișul de aer al pământului§ 31. Încălzirea atmosferei

10,045×103 J/(kg*K) (în intervalul de temperatură de la 0-100°C), C v 8.3710*103 J/(kg*K) (0-1500°C). Solubilitatea aerului în apă la 0°C este de 0,036%, la 25°C - 0,22%.

Compoziția atmosferică

Istoria formării atmosferice

Istoria timpurie

În prezent, știința nu poate urmări toate etapele formării Pământului cu o precizie sută la sută. Conform celei mai comune teorii, atmosfera Pământului a avut patru compoziții diferite de-a lungul timpului. Inițial, a constat din gaze ușoare (hidrogen și heliu) captate din spațiul interplanetar. Acesta este așa-numitul atmosfera primara. În etapa următoare, activitatea vulcanică activă a dus la saturarea atmosferei cu alte gaze decât hidrogenul (hidrocarburi, amoniac, vapori de apă). Așa s-a format atmosfera secundara. Această atmosferă era reconfortantă. În plus, procesul de formare a atmosferei a fost determinat de următorii factori:

  • scurgere constantă de hidrogen în spațiul interplanetar;
  • reacții chimice care apar în atmosferă sub influența radiațiilor ultraviolete, a descărcărilor de fulgere și a altor factori.

Treptat, acești factori au dus la formare atmosfera tertiara, caracterizată printr-un conținut mult mai scăzut de hidrogen și un conținut mult mai mare de azot și dioxid de carbon (format ca urmare a reacțiilor chimice din amoniac și hidrocarburi).

Apariția vieții și a oxigenului

Odată cu apariția organismelor vii pe Pământ ca urmare a fotosintezei, însoțită de eliberarea de oxigen și absorbția dioxidului de carbon, compoziția atmosferei a început să se schimbe. Există totuși date (analiza compoziției izotopice a oxigenului atmosferic și cea eliberată în timpul fotosintezei) care indică originea geologică a oxigenului atmosferic.

Inițial, oxigenul a fost cheltuit pentru oxidarea compușilor reduși - hidrocarburi, formă feroasă de fier conținută în oceane etc. La sfârșitul acestei etape, conținutul de oxigen din atmosferă a început să crească.

În anii 1990, au fost efectuate experimente pentru a crea un sistem ecologic închis („Biosfera 2”), timp în care nu a fost posibil să se creeze un sistem stabil cu o compoziție uniformă a aerului. Influența microorganismelor a dus la scăderea nivelului de oxigen și la creșterea cantității de dioxid de carbon.

Azot

Formarea unei cantități mari de N 2 se datorează oxidării atmosferei primare de amoniac-hidrogen cu O 2 molecular, care a început să iasă de la suprafața planetei ca urmare a fotosintezei, se presupune că acum aproximativ 3 miliarde de ani (conform la o altă versiune, oxigenul atmosferic este de origine geologică). Azotul este oxidat la NO în atmosfera superioară, folosit în industrie și legat de bacteriile fixatoare de azot, în timp ce N2 este eliberat în atmosferă ca urmare a denitrificării nitraților și a altor compuși care conțin azot.

Azotul N 2 este un gaz inert și reacționează numai în condiții specifice (de exemplu, în timpul unei descărcări de fulgere). Cianobacteriile și unele bacterii (de exemplu, bacteriile nodulare care formează simbioză rizobială cu plantele leguminoase) o pot oxida și transforma în formă biologică.

Oxidarea azotului molecular prin descărcări electrice este utilizată în producția industrială de îngrășăminte cu azot și a dus, de asemenea, la formarea unor depozite unice de nitrați în deșertul Atacama din Chile.

gaze nobile

Arderea combustibilului este principala sursă de gaze poluante (CO, NO, SO2). Dioxidul de sulf este oxidat de aerul O 2 la SO 3 în straturile superioare ale atmosferei, care interacționează cu vaporii de H 2 O și NH 3, iar H 2 SO 4 și (NH 4) 2 SO 4 rezultate se întorc la suprafața Pământului. împreună cu precipitaţii. Utilizarea motoarelor cu ardere internă duce la o poluare semnificativă a atmosferei cu oxizi de azot, hidrocarburi și compuși de Pb.

Poluarea cu aerosoli a atmosferei este cauzată atât de cauze naturale (erupții vulcanice, furtuni de praf, transport de picături de apă de mare și particule de polen vegetal etc.), cât și de activități economice umane (exploatarea minereurilor și materialelor de construcție, arderea combustibilului, fabricarea cimentului etc.). .) . Eliberarea intensă la scară largă de particule în atmosferă este una dintre posibilele cauze ale schimbărilor climatice de pe planetă.

Structura atmosferei și caracteristicile cochiliilor individuale

Starea fizică a atmosferei este determinată de vreme și climă. Parametrii de bază ai atmosferei: densitatea aerului, presiunea, temperatura și compoziția. Pe măsură ce altitudinea crește, densitatea aerului și presiunea atmosferică scad. Temperatura se modifică, de asemenea, odată cu schimbările de altitudine. Structura verticală a atmosferei este caracterizată de temperaturi și proprietăți electrice diferite și de condiții diferite de aer. În funcție de temperatura din atmosferă, se disting următoarele straturi principale: troposferă, stratosferă, mezosferă, termosferă, exosferă (sfera de împrăștiere). Regiunile de tranziție ale atmosferei dintre cochiliile vecine se numesc tropopauză, stratopauză etc.

troposfera

Stratosferă

În stratosferă, cea mai mare parte a undelor scurte a radiației ultraviolete (180-200 nm) este reținută, iar energia undelor scurte este transformată. Sub influența acestor raze, câmpurile magnetice se modifică, moleculele se dezintegrează, are loc ionizarea, noua formare de gaze și alte compuși chimici. Aceste procese pot fi observate sub formă de aurore boreale, fulgere și alte străluciri.

În stratosferă și în straturile superioare, sub influența radiației solare, moleculele de gaz se disociază în atomi (peste 80 km CO 2 și H 2 se disociază, peste 150 km - O 2, peste 300 km - H 2). La o altitudine de 100-400 km, ionizarea gazelor are loc și în ionosferă; la o altitudine de 320 km, concentrația particulelor încărcate (O + 2, O - 2, N + 2) este ~ 1/300 din concentrația de particule neutre. În straturile superioare ale atmosferei există radicali liberi - OH, HO 2 etc.

Aproape că nu există vapori de apă în stratosferă.

Mezosfera

Până la o altitudine de 100 km, atmosfera este un amestec omogen, bine amestecat de gaze. În straturile superioare, distribuția gazelor după înălțime depinde de greutățile moleculare ale acestora; concentrația de gaze mai grele scade mai repede cu distanța de la suprafața Pământului. Datorită scăderii densității gazului, temperatura scade de la 0°C în stratosferă la −110°C în mezosferă. Cu toate acestea, energia cinetică a particulelor individuale la altitudini de 200-250 km corespunde unei temperaturi de ~1500°C. Peste 200 km se observă fluctuații semnificative ale temperaturii și densității gazelor în timp și spațiu.

La o altitudine de aproximativ 2000-3000 km, exosfera se transformă treptat în așa-numitul vid din spațiul apropiat, care este umplut cu particule foarte rarefiate de gaz interplanetar, în principal atomi de hidrogen. Dar acest gaz reprezintă doar o parte din materia interplanetară. Cealaltă parte este formată din particule de praf de origine cometă și meteorică. Pe lângă aceste particule extrem de rarefiate, în acest spațiu pătrunde radiațiile electromagnetice și corpusculare de origine solară și galactică.

Troposfera reprezintă aproximativ 80% din masa atmosferei, stratosfera - aproximativ 20%; masa mezosferei nu este mai mare de 0,3%, termosfera este mai mică de 0,05% din masa totală a atmosferei. Pe baza proprietăților electrice din atmosferă, se disting neutronosfera și ionosfera. În prezent se crede că atmosfera se extinde până la o altitudine de 2000-3000 km.

În funcție de compoziția gazului din atmosferă, ele emit homosferăȘi heterosferă. Heterosferă- Aceasta este zona în care gravitația afectează separarea gazelor, deoarece amestecul lor la o astfel de altitudine este neglijabil. Aceasta implică o compoziție variabilă a heterosferei. Sub ea se află o parte bine amestecată, omogenă a atmosferei numită homosferă. Limita dintre aceste straturi se numește turbopauză, se află la o altitudine de aproximativ 120 km.

Proprietăți atmosferice

Deja la o altitudine de 5 km deasupra nivelului mării, o persoană neantrenată începe să se confrunte cu înfometarea de oxigen și, fără adaptare, performanța unei persoane este redusă semnificativ. Zona fiziologică a atmosferei se termină aici. Respirația omului devine imposibilă la o altitudine de 15 km, deși până la aproximativ 115 km atmosfera conține oxigen.

Atmosfera ne furnizează oxigenul necesar pentru respirație. Cu toate acestea, din cauza scăderii presiunii totale a atmosferei, pe măsură ce vă ridicați la altitudine, presiunea parțială a oxigenului scade în mod corespunzător.

Plămânii umani conțin în mod constant aproximativ 3 litri de aer alveolar. Presiunea parțială a oxigenului în aerul alveolar la presiunea atmosferică normală este de 110 mmHg. Art., presiunea dioxidului de carbon - 40 mm Hg. Art., iar vaporii de apă −47 mm Hg. Artă. Odată cu creșterea altitudinii, presiunea oxigenului scade, iar presiunea totală a vaporilor de apă și dioxid de carbon din plămâni rămâne aproape constantă - aproximativ 87 mm Hg. Artă. Furnizarea de oxigen a plămânilor se va opri complet atunci când presiunea aerului ambiant devine egală cu această valoare.

La o altitudine de aproximativ 19-20 km, presiunea atmosferică scade la 47 mm Hg. Artă. Prin urmare, la această altitudine, apa și lichidul interstițial încep să fiarbă în corpul uman. În afara cabinei presurizate la aceste altitudini, moartea are loc aproape instantaneu. Astfel, din punctul de vedere al fiziologiei umane, „spațiul” începe deja la o altitudine de 15-19 km.

Straturile dense de aer - troposfera și stratosfera - ne protejează de efectele dăunătoare ale radiațiilor. Cu suficientă rarefiere a aerului, la altitudini mai mari de 36 km, radiațiile ionizante - razele cosmice primare - au un efect intens asupra organismului; La altitudini de peste 40 km, partea ultravioletă a spectrului solar este periculoasă pentru oameni.