Звездная эволюция. Как происходит эволюция звезд

Созерцая ясное ночное небо вдали от городских огней, нетрудно заметить что Вселенная полна звезд. Каким образом природе удалось создать несметное число этих объектов? Ведь по оценкам только в Млечном Пути около 100 млрд. звезд. Кроме того, звезды рождаются и поныне, 10-20 млрд. лет спустя после образования Вселенной. Как образуются звезды? Каким изменениям подвергается звезда, прежде чем она достигнет устойчивого состояния, как у нашего Солнца?

С точки зрения физики, звезда — это газовый шар

С точки зрения физики, — это газовый шар. Теплота и давление генерируемые в ядерных реакциях — главным образом в реакциях синтеза гелия из водорода — предотвращают сжатие звезды под действием собственной гравитации. Жизнь этого относительно простого объекта проходит по вполне определенному сценарию. Сначала происходит рождение звезды из диффузного облака межзвездного газа, потом идет долгое светопреставление. Но в конце концов, когда все ядерное топливо будет исчерпано, она превратится в слабосветящийся белый карлик, нейтронную звезду или черную дыру.


Это описание может создать впечатление, что детальный анализ образования и ранних стадий эволюции звезд не должен вызывать существенных трудностей. Но взаимодействие гравитации и теплового давления приводит к тому, что звезды ведут себя непредсказуемым образом.
Рассмотрим, например, эволюцию светимости, то есть изменение количества энергии, испускаемое звездной поверхностью в единицу времени. Внутренняя температура молодой звезды слишком мала для слияния атомов ядер водорода, поэтому ее светимость должна быть относительно низкой. Она может возрасти, когда начнутся ядерные реакции, и лишь потом может постепенно падать. На самом деле очень молодая звезда чрезвычайно яркая. Ее светимость уменьшается с возрастом, достигая временного минимума во время горения водорода.

На ранних стадиях эволюции в звездах происходят разнообразные физические процессы

На ранних стадиях эволюции в звездах происходят разнообразные физические процессы, некоторые из которых еще плохо поняты. Только в последние два десятилетия астрономы начали строить детальную картину эволюции звезд на основе достижений.теории и наблюдений.
Звезды рождаются из больших не наблюдаемых в видимом свете облаков, расположенных в дисках спиральных галактик. Эти объекты астрономы называют гигантскими молекулярными комплексами. Термин «молекулярный» отражает тот факт, что газ в комплексах в основном состоит из водорода в молекулярной форме. Такие облака — самые большие образования в Галактике, иногда достигают более 300 св. лет в поперечнике.

При более тщательном анализе эволюции звезды

При более тщательном анализе обнаруживается, что звезды образуются из отдельных конденсаций — компактных зон -в гигантском молекулярном облаке. Астрономы исследовали свойства компактных зон с помощью больших радиотелескопов — единственных инструментов, способных регистрировать слабое миллимоблаков. Из наблюдений этого излучения следует, что типичная компактная зона имеет диаметр несколько световых месяцев, плотность 30000 молекул водорода на 1 см^ и температуру 10 Кельвинов.
На основе этих значений был сделан вывод, что давление газа в компактных зонах таково, что оно может противостоять сжатию под действием сил самогравитации.

Поэтому, чтобы образовалась звезда, компактная зона должна сжиматься из неустойчивого состояния, причем такого, чтобы силы гравитации превышали внутреннее газовое давление.
Пока еще не ясно, как компактные зоны конденсируются из исходного молекулярного облака и приобретают такое неустойчивое состояние. Тем не менее еще до открытия компактных зон у астрофизиков была возможность смоделировать процесс звездообразования. Уже в 60-х годах теоретики использовали компьютерное моделирование, чтобы определить, как происходит сжатие облаков в неустойчивом состоянии.
Хотя для теоретических расчетов использовался широкий диапазон начальных условий, полученные результаты совпадали: у слишком неустойчивого облака сжимается сначала внутренняя часть, то есть свободному падению подвергаются сначала вещество в центре, а периферийные области остаются стабильными. Постепенно область сжатия распространяется наружу, охватывая все облако.

Глубоко в недрах сжимающийся области начинается эволюция звезд

Глубоко в недрах сжимающийся области начинается звездообразование. Диаметр звезды -всего лишь одна световая секунда, т. е. одна миллионная поперечника компактной зоны. Для таких относительно малых размеров общая картина сжатия облака не существенна, а главную роль здесь играет скорость падения вещества на звезду

Скорость падения вещества может быть разной, но она в прямую зависит от температуры облака. Чем выше температура, тем больше скорость. Вычисления показывают, что масса, равная массе Солнца, может накапливаться в центре сжимающейся компактной зоны за время от 100 тыс. до 1 млн. лет.Тело, образующееся в центре коллапсирующе-го облака, называют протозвездой. С помощью компьютерного моделирования астрономы разработали модель, описывающую строение протозвезды.
Оказалось, что падающий газ ударяется о поверхность протозвезды с очень высокой скоростью. Поэтому образуется мощный ударный фронт (резкий переход к очень высокому давлению). В пределах ударного фронта газ нагревается почти до 1 млн. Кельвинов, затем при излучении у поверхности быстро охлаждается примерно ло 10000 К, образуя слой за слоем протозвезду.

Наличием ударного фронта объясняется высокая яркость молодых звезд

Наличием ударного фронта объясняется высокая яркость молодых звезд. Если масса протоз-везды равна одной солнечной, то ее светимость может превышает солнечную в десять раз. Но она обусловлена не реакциями термоядерного синтеза, как у обычных звезд, а кинетической энергией вещества, приобретаемой в поле гравитации.
Протозвезды можно наблюдать, но не с помощью обычных оптических телескопов.
Весь межзвездный газ, в том числе и тот, из которого образуются звезды, содержит в себе «пыль» — смесь твердых частиц субмикронных размеров. Излучение ударного фронта встречает на своем пути большое число этих частиц, падающих вместе с газом на поверхность протозвезды.
Холодные пылевые частицы поглощают фотоны, испускаемые ударным фронтом, и переизлучают их более длинноволновыми. Это длинноволновое излучение в свою очередь поглощается, а затем переизлучается еще более удаленной пылью. Поэтому пока фотон прокладывают свой путь сквозь облака пыли и газа, его длина волны оказывается в инфракрасном диапазоне электромагнитного спектра. Но уже на расстоянии нескольких световых часов от протозвезды длина волны фотона становится слишком велика, так что пыль не может его поглотить, и он, наконец, может беспрепятственно мчаться к земным телескопам, чувствительным к инфракрасному излучению.
Несмотря на широкие возможности современных детекторов, астрономы не могут утверждать, что телескопы действительно регистрируют излучение протозвезд. По-видимому они глубоко спрятаны в недрах компактных зон, зарегистрированных в радиодиапазоне. Неопределенность в регистрации связана с тем, что детекторы не могут отличить протозвезду от более старших звезд, вкрапленных в газ и пыль.
Для надежного отождествления инфракрасный или радиотелескоп должен обнаружить доплеровское смещение спектральных линий излучения протозвезды. Доплеровское смещение показало бы истинное движение газа, падающего на ее поверхность.
Как только в результате падения вещества масса протозвезды достигает нескольких десятых массы Солнца, температура в центре становится достаточной для начала реакций термоядерного синтеза. Однако термоядерные реакции в протозвездах коренным образом отличаются от реакций в звездах среднего «возраста». Источником энергии таких звезд являются реакции термоядерного синтеза гелия из водорода.

Водород — самый распространенный химический элемент во Вселенной

Водород — самый распространенный химический элемент во Вселенной. При рождении Вселенной (Большом взрыве) этот элемент образовался в обычной форме с ядром, состоящим из одного протона. Но два из каждых 100000 ядер являются ядрами дейтерия, состоящими из протона и нейтрона. Этот изотоп водорода присутствует в современную эпоху в межзвездном газе, из которого он попадает в звезды.
Примечательно, что эта мизерная примесь играет доминирующую роль в жизни протозвезд. Температура в их недрах недостаточна для реакций обычного водорода, которые происходят при 10 млн. Кельвинов. Но в результате гравитационного сжатия температура в центре протозвезды легко может достичь 1 млн. Кельвинов, когда начинается слияние ядер дейтерия, при которых также выделяется колоссальная энергия.

Непрозрачность протозвездного вещества слишком велика

Непрозрачность протозвездного вещества слишком велика, чтобы эта энергия передавалась путем лучистого переноса. Поэтому звезда становится конвективно неустойчивой: нагретые на «ядерном огне» пузыри газа всплывают к поверхности. Эти восходящие потоки уравновешиваются нисходящими к центру потоками холодного газа. Подобные конвективные движения, но в гораздо меньших масштабах, имеют место в комнате с паровым отоплением. В протозвезде конвективные вихри переносят дейтерий с поверхности в ее недра. Таким образом топливо, необходимое для термоядерных реакций, достигает ядра звезды.
Несмотря на очень низкую концентрацию ядер дейтерия, выделяющееся при их слиянии тепло оказывает сильное влияние на протозвезду. Главным следствием реакций горения дейтерия является «разбухание» протозвезды. Из-за эффективного переноса тепла путем конвекции в результате «горения» дейтерия протозвезда увеличивается в размерах, который зависит от ее массы. Протозвезда одной солнечной массы имеет радиус, равный пяти солнечным. При массе, равной трем солнечным, протозвезда раздувается до радиуса, равного 10 солнечным.
Масса типичной компактной зоны больше массы порождаемой ее звезды. Поэтому должен существовать некоторый механизм, удаляющий излишнюю массу и прекращающий падение вещества. Большинство астрономов убеждены, что за это ответственен сильный звездный ветер, вырывающийся с поверхности протозвезды. Звездный ветер сдувает падающий газ в обратном на-правлении и в конце концов рассеивает компактную зону.

Идея звездного ветра

Из теоретических расчетов «идея звездного ветра» не следует. И удивленным теоретикам были предоставлены свидетельства этого явления: наблюдения потоков молекулярного газа, движущихся от инфракрасных источников излучения. Эти потоки связаны с протозвездным ветром. Его происхождение одна из самых глубоких тайн молодых звезд.
Когда рассеивается компактная зона, обнажается объект, который можно наблюдать в оптическом диапазоне — молодая звезда. Как и протозвезда, она имеет высокую светимость, которая в большей мере определяется гравитацией, чем термоядерным синтезом. Давление в недрах звезды предотвращает катастрофический гравитационный коллапс. Однако тепло, ответственное за это давление, излучается со звездной поверхности, поэтому звезда очень ярко светит и медленно сжимается.
По мере сжатия ее внутренняя температура постепенно растет и в конце концов достигает 10 млн. Кельвинов. Тогда начинаются реакции слияния ядер водорода с образованием гелия. Выделяемое тепло создает давление, препятствующее сжатию, и звезда долго будет светить, пока в ее недрах не закончится ядерное топливо.
Нашему Солнцу, типичной звезде, потребовалось около 30 млн. лет на сжатие от протозвездных до современных размеров. Благодаря теплу, выделяемому при термоядерных реакциях, оно сохраняет эти размеры уже в течение примерно 5 млрд. лет.
Так рождаются звезды. Но несмотря на столь явные успехи ученых, позволивших нам узнать одну из многих тайн мироздания, еще многие известные свойства молодых звезд пока полностью не понятны. Это относится к их неправильной переменности, колоссальному звездному ветру, неожиданным ярким вспышкам. На эти вопросы еще нет уверенных ответов. Но эти нерешенные проблемы следует рассматривать как разрывы в цепи, основные звенья которой уже спааяны. И нам удастся замкнуть эту цепь и завершить биографию молодых звезд, если мы найдем ключ, созданный самой природой. И этот ключ мерцает в ясном небе над нами.

Рождение звезды видео:

Каждый из нас хотя бы раз в жизни смотрел в звездное небо. Кто-то смотрел на эту красоту, испытывая романтические чувства, другой пытался понять, откуда берется вся эта красота. Жизнь в космосе, в отличие от жизни на нашей планете, течет на другой скорости. Время в космическом пространстве живет своими категориями, расстояния и размеры во Вселенной колоссальны. Мы редко задумываемся над тем, что на наших глазах постоянно происходит эволюция галактик и звезд. Каждый объект в бескрайнем космосе является следствием определенным физических процессов. У галактик, у звезд и даже у планет имеются основные фазы развития.

Наша планета и мы все зависим от нашего светила. Как долго Солнце будет радовать нас своим теплом, вдыхая жизнь в Солнечную систему? Что ждет нас в будущем через миллионы и миллиарды лет? В связи с этим, любопытно больше узнать о том, каковы этапы эволюции астрономических объектов, откуда берутся звезды и чем оканчивается жизнь этих чудесных светил в ночном небе.

Происхождение, рождение и эволюция звезд

Эволюция звезд и планет, населяющих нашу галактику Млечный Путь и всю Вселенную, большей частью неплохо изучена. В космосе незыблемо действуют законы физики, которые помогают понять происхождение космических объектов. Опираться в данном случае принято на теорию Большого Взрыва, которая сейчас является доминирующей доктриной о процессе происхождения Вселенной. Событие, потрясшее мироздание и приведшее к формированию вселенной, по космическим меркам молниеносно. Для космоса от рождения звезды до ее гибели проходят мгновения. Огромные расстояния создают иллюзию постоянства Вселенной. Вспыхнувшая вдали звезда светит нам миллиарды лет, в то время ее уже может и не быть.

Теория эволюции галактики и звезд является развитием теории Большого Взрыва. Учение о рождении звезд и возникновении звездных систем отличается масштабами происходящего и временными рамками, которые, в отличие от Вселенной в целом, возможно наблюдать современными средствами науки.

Изучая жизненный цикл звезд можно на примере ближайшего к нам светила. Солнце – одна из сотни триллионов звезд в нашем поле зрения. К тому же расстояние от Земли до Солнца (150 млн. км) предоставляет уникальную возможность изучить объект, не покидая пределов Солнечной системы. Полученная информация позволит детально разобраться с тем, как устроены другие звезды, как быстро эти гигантские источники тепла истощаются, каковы стадии развития звезды и каким будет финал этой блистательной жизни — тихий и тусклый или сверкающий, взрывной.

После Большого взрыва мельчайшие частицы сформировали межзвездные облака, которые стали «роддомом» для триллионов звезд. Характерно, что все звезды рождались в одно и то же время в результате сжатия и расширения. Сжатие в облаках космического газа возникало под воздействием собственной гравитации и аналогичных процессов у новых звезд по соседству. Расширение возникло в результате внутреннего давления межзвездного газа и под действием магнитных полей внутри газового облака. При этом облако свободно вращалось вокруг своего центра масс.

Облака газа, образовавшиеся после взрыва, на 98% состоят из атомарного и молекулярного водорода и гелия. Только 2% в этом массиве приходится на пылевые и твердые микроскопические частицы. Ранее считалось, что в центре любой звезды лежит ядро железа, раскаленного до температуры в миллион градусов. Именно этим аспектом и объяснялась гигантская масса светила.

В противостоянии физических сил преобладали силы сжатия, так как свет, возникающий в результате выделения энергии, не проникает внутрь газового облака. Свет вместе с частью выделяемой энергии распространяется наружу, создавая внутри плотного скопления газа минусовую температуру и зону низкого давления. Находясь в таком состоянии, космический газ стремительно сжимается, влияние сил гравитационного притяжения приводит к тому, что частицы начинают формировать звездное вещество. Когда скопление газа плотное, интенсивное сжатие приводит к тому, что образуются звездное скопление. Когда размеры газового облака незначительны, сжатие приводит к образованию одиночной звезды.

Краткая характеристика происходящего заключается в том, что будущее светило проходит два этапа — быстрое и медленное сжатие до состояния протозвезды. Говоря простым и понятным языком, быстрое сжатие является падением звездного вещества к центру протозвезды. Медленное сжатие происходит уже на фоне образовавшегося центра протозвезды. В течение последующих сотен тысяч лет новое образование сокращается в размерах, а его плотность увеличивается в миллионы раз. Постепенно протозвезда становится непрозрачной из-за высокой плотности звездного вещества, а продолжающееся сжатие запускает механизм внутренних реакций. Рост внутреннего давления и температур приводит к образованию у будущей звезды собственного центра тяжести.

В таком состоянии протозвезда пребывает миллионы лет, медленно отдавая тепло и постепенно сжимаясь, уменьшаясь в размерах. В результате вырисовываются контуры новой звезды, а плотность его вещества становится сравнима с плотностью воды.

В среднем плотность нашей звезды составляет 1,4 кг/см3 — практически такая же, как плотность воды в соленом Мертвом море. В центре Солнце имеет плотность 100 кг/см3. Звездное вещество находится не в жидком состоянии, а пребывает в виде плазмы.

Под воздействием огромного давления и температуры приблизительно в 100 миллионов К начинаются термоядерные реакции водородного цикла. Сжатие прекращается, масса объекта возрастает, когда энергия гравитации переходит в термоядерное горение водорода. С этого момента новая звезда, излучая энергию, начинает терять массу.

Вышеописанный вариант образования звезды — всего лишь примитивная схема, которая описывает начальный этап эволюции и рождения звезды. Сегодня такие процессы в нашей галактике и во всей Вселенной практически незаметны ввиду интенсивного истощения звездного материала. За всю сознательную историю наблюдений за нашей Галактикой были отмечены лишь единичные появления новых звезд. В масштабах Вселенной эта цифра может быть увеличена в сотни и в тысячи раз.

Большую часть своей жизни протозвезды скрыты от человеческого глаза пылевой оболочкой. Излучение ядра можно наблюдать только в инфракрасном диапазоне, который является единственной возможностью видеть рождение звезды. К примеру, в Туманности Ориона в 1967 году ученые-астрофизики в инфракрасном диапазоне обнаружили новую звезду, температура излучения которой составляла 700 градусов Кельвина. Впоследствии выяснилось, что местом рождения протозвезд являются компактные источники, которые имеются не только в нашей галактике, но и в других отдаленных от нас уголках Вселенной. Помимо инфракрасного излучения места рождения новых звезд отмечены интенсивными радиосигналами.

Процесс изучения и схема эволюции звезд

Весь процесс познания звезд можно условно разделить на несколько этапов. В самом начале следует определить расстояние до звезды. Информация о том, как далеко от нас находится звезда, как долго идет от нее свет, дает представление о том, что происходило со светилом на протяжении всего этого времени. После того, как человек научился измерять расстояние до далеких звезд, стало ясно, что звезды – это то же самые солнца, только разных размеров и с разной судьбой. Зная расстояние до звезды, по уровню света и количеству излучаемой энергии можно проследить процесс термоядерного синтеза звезды.

Вслед за определением расстояния до звезды можно с помощью спектрального анализа рассчитать химический состав светила и узнать его структуру и возраст. Благодаря появлению спектрографа у ученых проявилась возможность изучить природу света звезд. Этим прибором можно определить и измерить газовый состав звездного вещества, которым обладает звезда на разных этапах своего существования.

Изучая спектральный анализ энергии Солнца и других звезд, ученые пришли к выводу, что эволюция звезд и планет имеет общие корни. Все космические тела имеют однотипный, сходный химический состав и произошли из одной и той же материи, возникшей в результате Большого Взрыва.

Звездное вещество состоит из тех же химических элементов (вплоть до железа), что и наша планета. Разница только в количестве тех или иных элементов и в процессах, происходящих на Солнце и внутри земной тверди. Это и отличает звезды от других объектов во Вселенной. Происхождение звезд следует также рассматривать в контексте другой физической дисциплины — квантовой механики. По этой теории, материя, которая определяет звездное вещество, состоит из постоянно делящихся атомов и элементарных частиц, создающих свой микромир. В этом свете вызывает интерес структура, состав, строение и эволюция звезд. Как выяснилось, основная масса нашей звезды и многих других звезд приходится всего на два элемента — водород и гелий. Теоретическая модель, описывающая строение звезды, позволит понять их строение и главное отличие от других космических объектов.

Главная особенность заключается в том, что многие объекты во Вселенной имеют определенный размер и форму, тогда как звезда может по мере своего развития менять размер. Горячий газ представляет собой соединение атомов, слабо связанных друг с другом. Через миллионы лет после формирования звезды начинается остывание поверхностного слоя звездного вещества. Большую часть своей энергии звезда отдает в космическое пространство, уменьшаясь или увеличиваясь в размерах. Передача тепла и энергии происходит из внутренних областей звезды к поверхности, оказывая влияние на интенсивность излучения. Другими словами, одна и та же звезда в разные периоды своего существования выглядит по-разному. Термоядерные процессы на основе реакций водородного цикла способствуют превращению легких атомов водорода в более тяжелые элементы — гелий и углерод. По мнению астрофизиков и ученых-ядерщиков, подобная термоядерная реакция является самой эффективной по количеству выделяемого тепла.

Почему же термоядерный синтез ядра не заканчивается взрывом такого реактора? Все дело в том, что силы гравитационного поля в нем могут удерживать звездное вещество в пределах стабилизированного объема. Из этого можно сделать однозначный вывод: любая звезда представляет собой массивное тело, которое сохраняет свои размеры благодаря балансу между силами гравитации и энергией термоядерных реакций. Результатом такой идеальной природной модели является источник тепла, способный работать длительное время. Предполагается, что первые формы жизни на Земле появились 3 млрд. лет назад. Солнце в те далекие времена грело нашу планету так же, как и сейчас. Следовательно, наша звезда мало чем изменилась, несмотря на то, что масштабы излучаемого тепла и солнечной энергии колоссальны — более 3-4 млн. тонн каждую секунду.

Нетрудно подсчитать, сколько за все годы своего существования наша звезда потеряла в весе. Это будет громадная цифра, однако из-за своей огромной массы и высокой плотности такие потери в масштабах Вселенной выглядят ничтожными.

Стадии эволюции звезд

Судьба светила в находится в зависимости от исходной массы звезды и ее химического состава. Пока в ядре сосредоточены основные запасы водорода, звезда пребывает в так называемой главной последовательности. Как только наметилась тенденция на увеличение размеров звезды, значит, иссяк основной источник для термоядерного синтеза. Начался длительный финальный путь трансформации небесного тела.

Образовавшиеся во Вселенной светила изначально делятся на три самых распространенных типа:

  • нормальные звезды (желтые карлики);
  • звезды-карлики;
  • звезды-гиганты.

Звезды с малой массой (карлики) медленно сжигают запасы водорода и проживают свою жизнь достаточно спокойно.

Таких звезд большинство во Вселенной и к ним относится наша звезда – желтый карлик. С наступлением старости желтый карлик становится красным гигантом или сверхгигантом.

Исходя из теории происхождения звезд, процесс формирования звезд во Вселенной не закончился. Самые яркие звезды в нашей галактике являются не только самыми крупными, в сравнении с Солнцем, но и самыми молодыми. Астрофизики и астрономы называют такие звезды голубыми сверхгигантами. В конце концов, их ожидает одна и та же участь, которую переживают триллионы других звезд. Сначала стремительное рождение, блистательная и ярая жизнь, после которой наступает период медленного затухания. Звезды такого размера, как Солнце, имеют продолжительный жизненный цикл, находясь в главной последовательности (в средней ее части).

Используя данные о массе звезды, можно предположить ее эволюционный путь развития. Наглядная иллюстрация данной теории — эволюция нашей звезды. Ничто не бывает вечным. В результате термоядерного синтеза водород превращается в гелий, следовательно, его первоначальные запасы расходуются и уменьшаются. Когда-то, очень не скоро, эти запасы закончатся. Судя по тому, что наше Солнце продолжает светить уже более 5 млрд. лет, не меняясь в своих размерах, зрелый возраст звезды еще может продлиться примерно такой же период.

Истощение запасов водорода приведет к тому, что под воздействием гравитации ядро солнца начнет стремительно сжиматься. Плотность ядра станет очень высокой, в результате чего термоядерные процессы переместятся в прилегающие к ядру слои. Подобное состояние называется коллапсом, который может быть вызван прохождением термоядерных реакций в верхних слоях звезды. В результате высокого давления запускаются термоядерные реакции с участием гелия.

Запасов водорода и гелия в этой части звезды хватит еще на миллионы лет. Еще очень нескоро истощение запасов водорода приведет к увеличению интенсивность излучения, к увеличению размеров оболочки и размеров самой звезды. Как следствие, наше Солнце станет очень большим. Если представить эту картину через десятки миллиардов лет, то вместо ослепительного яркого диска на небе будет висеть жаркий красный диск гигантских размеров. Красные гиганты — это естественная фаза эволюции звезды, ее переходное состояние в разряд переменных звезд.

В результате такой трансформации сократится расстояние от Земли до Солнца, так что Земля попадет в зону влияния солнечной короны и начнет «жариться» в ней. Температура на поверхности планеты вырастет в десятки раз, что приведет к исчезновению атмосферы и к испарению воды. В результате планета превратится в безжизненную каменистую пустыню.

Финальные стадии эволюции звезд

Достигнув фазы красного гиганта, нормальная звезда под влиянием гравитационных процессов становится белым карликом. Если масса звезды примерно равна массе нашего Солнца, все основные процессы в ней будут происходить спокойно, без импульсов и взрывных реакций. Белый карлик будет умирать долго, выгорая дотла.

В случаях, когда звезда изначально имела массу больше солнечной в 1,4 раза, белый карлик не будет финальной стадией. При большой массе внутри звезды начинаются процессы уплотнения звездного вещества на атомном, молекулярном уровне. Протоны превращаются в нейтроны, плотность звезды увеличивается, а ее размеры стремительно уменьшаются.

Известные науке нейтронные звезды имеют диаметр в 10-15 км. При таких малых размерах нейтронная звезда имеет колоссальную массу. Один кубический сантиметр звездного вещества может весить миллиарды тонн.

В том случае, если мы имели изначально дело со звездой большой массы, финальный этап эволюции принимает другие формы. Судьба массивной звезды – черная дыра — объект с неизученной природой и непредсказуемым поведением. Огромная масса звезды способствует увеличению гравитационных сил, приводящих в движение силы сжатия. Приостановить этот процесс не представляется возможным. Плотность материи растет до тех пор, пока не превращается в бесконечность, образуя сингулярное пространство (теория относительности Эйнштейна). Радиус такой звезды в конечном итоге станет равен нулю, став черной дырой в космическом пространстве. Черных дыр было бы значительно больше, если бы в космосе большую часть пространства занимали массивные и сверхмассивные звезды.

Следует отметить, что при трансформации красного гиганта в нейтронную звезду или в черную дыру, Вселенная может пережить уникальное явление — рождение нового космического объекта.

Рождение сверхновой – самая впечатляющая финальная стадия эволюции звезд. Здесь действует естественный закон природы: прекращение существование одного тела дает начало новой жизни. Период такого цикла, как рождение сверхновой, в основном касается массивных звезд. Израсходовавшиеся запасы водорода приводят к тому, что в процесс термоядерного синтеза включается гелий и углерод. В результате этой реакции давление снова растет, а в центре звезды образуется ядро железа. Под воздействием сильнейших гравитационных сил центр массы смещается в центральную часть звезды. Ядро становится настолько тяжелым, что неспособно противостоять собственной гравитации. Как следствие, начинается стремительное расширение ядра, приводящее к мгновенному взрыву. Рождение сверхновой — это взрыв, ударная волна чудовищной силы, яркая вспышка в бескрайних просторах Вселенной.

Следует отметить, что наше Солнце не является массивной звездой, поэтому подобная судьба ее не грозит, не стоит бояться такого финала и нашей планете. В большинстве случаев взрывы сверхновых происходят в далеких галактиках, с чем и связано их достаточно редкое обнаружение.

В заключение

Эволюция звезд — это процесс, который растянут по времени на десятки миллиардов лет. Наше представление о происходящих процессах — всего лишь математическая и физическая модель, теория. Земное время является лишь мгновением в огромном временном цикле, которым живет наша Вселенная. Мы можем только наблюдать то, что происходило миллиарды лет назад и предполагать, с чем могут столкнуться последующие поколения землян.

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

Внутренняя жизнь звезды регулируется воздействием двух сил: силы притяжения, которая противодействует звезде, удерживает ее, и силы, освобождающейся при происходящих в ядре ядерных реакциях. Она, наоборот, стремится “вытолкнуть” звезду в дальнее пространство. Во время стадий формирования плотная и сжатая звезда находится под сильным воздействием гравитации. В результате происходит сильное нагревание, температура достигает 10-20 миллионов градусов. Этого достаточно для начала ядерных реакций, в результате которых водород превращается в гелий.

Затем в течении длительного периода две силы уравновешивают друг друга, звезда находится в стабильном состоянии. Когда ядерное горючее ядра понемногу иссякает, звезда вступает в фазу нестабильности, две силы противоборствуют. Для звезды наступает критический момент, в действие вступают самые разные факторы – температура, плотность, химический состав. На первое место выступает масса звезды, именно от нее зависит будущее этого небесного тела – или звезда вспыхнет, как сверхновая, или превратится в белого карлика, нейтронную звезду или в черную дыру.

Как иссякает водород

Только очень крупные среди небесных тел (примерно в 80 раз превышающие массу Юпитера) становятся звездами, меньшие (примерно в 17 раз меньше Юпитера) становятся планетами. Есть и тела средней массы, они слишком крупные, чтобы относиться к классу планет, и слишком маленькие и холодные для того, что бы в их недрах происходили ядерные реакции, характерные для звезд.

Эти небесные тела темного цвета обладают слабой светимостью, их довольно сложно различить на небе. Они получили название “коричневые карлики”.

Итак, звезда формируется из облаков, состоящих из межзвездного газа. Как уже отмечалось, довольно длительное время звезда пребывает в уравновешенном состоянии. Затем наступает период нестабильности. Дальнейшая судьба звезды зависит от различных факторов. Рассмотрим гипотетическую звезду небольшого размера, масса которой составляет от 0,1 до 4 солнечных масс. Характерной чертой звезд, имеющих малую массу, является отсутствие конвекции во внутренних слоях, т.е. вещества, входящие в состав звезды, не смешиваются, как это происходит у звезд, обладающих большой массой.

Это означает, что, когда водород в ядре заканчивается, новых запасов этого элемента во внешних слоях нет. Водород, сгорая, превращается в гелий. Понемногу ядро разогревается, поверхностные слои дестабилизируют собственную структуру, и звезда, как можно видеть по диаграмме Г-Р, медленно выходит из фазы Главной последовательности. В новой фазе плотность материи внутри звезды повышается, состав ядра “дегенерирует”, в результате появляется особая консистенция. Она отличается от нормальной материи.

Видоизменение материи

Когда материя видоизменяется, давление зависит только от плотности газов, а не от температуры.

На диаграмме Герцшпрунга – Ресселла звезда сдвигается вправо, а затем вверх, приближаясь к области красных гигантов. Ее размеры значительно увеличиваются, и из-за этого температура внешних слоев падает. Диаметр красного гиганта может достигать сотни миллионов километров. Когда наше войдёт в эту фазу, оно “проглотит” или и Венеру, а если не сможет захватить и Землю, то разогреет её до такой степени, что жизнь на нашей планете перестанет существовать.

За время эволюции звезды температура ее ядра повышается. Сначала происходят ядерные реакции, затем по достижении оптимальной температуры начинается плавление гелия. Когда это происходит, внезапное повышение температуры ядра вызывает вспышку, и звезда быстро перемещается в левую часть диаграммы Г-Р. Это так называемый “helium flash”. В это время ядро, содержащее гелий, сгорает вместе с водородом, который входит в состав оболочки, окружающей ядро. На диаграмме Г-Р эта стадия фиксируется продвижением вправо по горизонтальной линии.

Последние фазы эволюции

При трансформации гелия в углерод ядро видоизменяется. Его температура повышается до тех пор (если звезда крупная), пока углерод не начнет гореть. Происходит новая вспышка. В любом случае во время последних фаз эволюции звезды отмечается значительная потеря ее массы. Это может происходить постепенно или резко, во время вспышки, когда внешние слои звезды лопаются, как большой пузырь. В последнем случае образуется планетарная туманность – оболочка сферической формы, распространяющаяся в космическом пространстве со скоростью в несколько десятков или даже сотен км/сек.

Конечная судьба звезды зависит от массы, оставшейся после всего происходящего в ней. Если она во время всех превращений и вспышек выбросила много материи и ее масса не превышает 1,44 солнечной массы, звезда превращается в белого карлика. Эта цифра носит название “лимит Чандра - секара” в честь пакистанского астрофизика Субрахманьяна Чандрасекара. Это максимальная масса звезды, при которой катастрофический конец может не состоятся из-за давления электронов в ядре.

После вспышки внешних слоев ядро звезды остается, и его поверхностная температура очень высока – порядка 100 000 °К. Звезда двигается к левому краю диаграммы Г-Р и спускается вниз. Ее светимость уменьшается, так как уменьшаются размеры.

Звезда медленно доходит до зоны белых карликов. Это звезды небольшого диаметра (как наша ), но отличающиеся очень высокой плотностью, в полтора миллиона раз больше плотности воды. Кубический сантиметр вещества, из которого состоит белый карлик, на Земле весил бы около одной тонны!

Белый карлик представляет собой конечную стадию эволюции звезды, без вспышек. Она понемногу остывает.

Ученые полагают, что конец белого карлика проходит очень медленно, во всяком случае, с начала существования Вселенной, похоже, ни один белый карлик не пострадал от “термической смерти”.

Если же звезда крупная, и ее масса больше Солнца, она вспыхнет, как сверхновая. Во время вспышки звезда может разрушиться полностью или частично. В первом случае от нее останется облако газа с остаточными веществами звезды. Во втором – остается небесное тело высочайшей плотности – нейтронная звезда или черная дыра.

  • 20. Радиосвязь между цивилизациями, находящимися на различных планетных системах
  • 21. Возможность осуществления межзвездной связи оптическими методами
  • 22. Связь с инопланетными цивилизациями с помощью автоматических зондов
  • 23. Теоретико-вероятностный анализ межзвездной радиосвязи. Характер сигналов
  • 24. О возможности прямых контактов между инопланетными цивилизациями
  • 25. Замечания о темпах и характере технологического развития человечества
  • II. Возможна ли связь с разумными существами других планет?
  • Часть первая АСТРОНОМИЧЕСКИЙ АСПЕКТ ПРОБЛЕМЫ

    4. Эволюция звезд Современная астрономия располагает большим количеством аргументов в пользу утверждения, что звезды образуются путем конденсации облаков газопылевой межзвездной среды. Процесс образования звезд из этой среды продолжается и в настоящее время. Выяснение этого обстоятельства является одним из крупнейших достижений современной астрономии. Еще сравнительно недавно считали, что все звезды образовались почти одновременно много миллиардов лет назад. Крушению этих метафизических представлений способствовал, прежде всего, прогресс наблюдательной астрономии и развитие теории строения и эволюции звезд. В результате стало ясно, что многие наблюдаемые звезды являются сравнительно молодыми объектами, а некоторые из них возникли тогда, когда на Земле уже был человек. Важным аргументом в пользу вывода о том, что звезды образуются из межзвездной газопылевой среды, служит расположение групп заведомо молодых звезд (так называемых "ассоциаций") в спиральных ветвях Галактики. Дело в том, что согласно радиоастрономическим наблюдениям межзвездный газ концентрируется преимущественно в спиральных рукавах галактик. В частности, это имеет место и в нашей Галактике. Более того, из детальных "радиоизображений" некоторых близких к нам галактик следует, что наибольшая плотность межзвездного газа наблюдается на внутренних (по отношению к центру соответствующей галактики) краях спирали, что находит естественное объяснение, на деталях которого мы здесь останавливаться не можем. Но именно в этих частях спиралей наблюдаются методами оптической астрономии "зоны HII", т. е. облака ионизованного межзвездного газа. В гл. 3 уже говорилось, что причиной ионизации таких облаков может быть только ультрафиолетовое излучение массивных горячих звезд - объектов заведомо молодых (см. ниже). Центральным в проблеме эволюции звезд является вопрос об источниках их энергии. В самом деле, откуда, например, берется огромное количество энергии, необходимой для поддержания излучения Солнца примерно на наблюдаемом уровне в течение нескольких миллиардов лет? Ежесекундно Солнце излучает 4х10 33 эрг, а за 3 млрд лет оно излучило 4х10 50 эрг. Несомненно, что возраст Солнца около 5 млрд лет. Это следует хотя бы из современных оценок возраста Земли различными радиоактивными методами. Вряд ли Солнце "моложе" Земли. В прошлом веке и в начале этого века предлагались различные гипотезы о природе источников энергии Солнца и звезд. Некоторые ученые, например, считали, что источником солнечной энергии является непрерывное выпадение на его поверхность метеорных тел, другие искали источник в непрерывном сжатии Солнца. Освобождающаяся при таком процессе потенциальная энергия могла бы, при некоторых условиях, перейти в излучение. Как мы увидим ниже, этот источник на раннем этапе эволюции звезды может быть довольно эффективным, но он никак не может обеспечить излучение Солнца в течение требуемого времени. Успехи ядерной физики позволили решить проблему источников звездной энергии еще в конце тридцатых годов нашего столетия. Таким источником являются термоядерные реакции синтеза, происходящие в недрах звезд при господствующей там очень высокой температуре (порядка десяти миллионов Кельвинов). В результате этих реакций, скорость которых сильно зависит от температуры, протоны превращаются в ядра гелия, а освобождающаяся энергия медленно "просачивается" сквозь недра звезд и в конце концов, значительно трансформированная, излучается в мировое пространство. Это исключительно мощный источник. Если предположить, что первоначально Солнце состояло только из водорода, который в результате термоядерных реакций целиком превратился в гелий, то выделившееся количество энергии составит примерно 10 52 эрг. Таким образом, для поддержания излучения на наблюдаемом уровне в течение миллиардов лет достаточно, чтобы Солнце "израсходовало" не свыше 10% своего первоначального запаса водорода. Теперь мы можем представить картину эволюции какой-нибудь звезды следующим образом. По некоторым причинам (их можно указать несколько) начало конденсироваться облако межзвездной газопылевой среды. Довольно скоро (разумеется, по астрономическим масштабам!) под влиянием сил всемирного тяготения из этого облака образуется сравнительно плотный непрозрачный газовый шар. Строго говоря, этот шар еще нельзя назвать звездой, так как в его центральных областях температура недостаточна для того, чтобы начались термоядерные реакции. Давление газа внутри шара не в состоянии пока уравновесить силы притяжения отдельных его частей, поэтому он будет непрерывно сжиматься. Некоторые астрономы раньше считали, что такие "протозвезды" наблюдаются в отдельных Туманностях в виде очень темных компактных образований, так называемых глобул (рис. 12). Успехи радиоастрономии, однако, заставили отказаться от такой довольно наивной точки зрения (см. ниже). Обычно одновременно образуется не одна протозвезда, а более или менее многочисленная группа их. В дальнейшем эти группы становятся звездными ассоциациями и скоплениями, хорошо известными астрономам. Весьма вероятно, что на этом самом раннем этапе эволюции звезды вокруг нее образуются сгустки с меньшей массой, которые затем постепенно превращаются в планеты (см. гл. 9).

    Рис. 12. Глобулы в диффузионной туманности

    При сжатии протозвезды температура ее повышается и значительная часть освобождающейся потенциальной энергии излучается в окружающее пространство. Так как размеры сжимающегося газового шара очень велики, то излучение с единицы егo поверхности будет незначительным. Коль скоро поток излучения с единицы поверхности пропорционален четвертой степени температуры (закон Стефана - Больцмана), температура поверхностных слоев звезды сравнительно низка, между тем как ее светимость почти такая же, как у обычной звезды с той же массой. Поэтому на диаграмме "спектр - светимость" такие звезды расположатся вправо от главной последовательности, т. е. попадут в область красных гигантов или красных карликов, в зависимости от значений их первоначальных масс. В дальнейшем протозвезда продолжает сжиматься. Ее размеры становятся меньше, а поверхностная температура растет, вследствие чего спектр становится все более "ранним". Таким образом, двигаясь по диаграмме "спектр - светимость", протозвезда довольно быстро "сядет" на главную последовательность. В этот период температура звездных недр уже оказывается достаточной для того, чтобы там начались термоядерные реакции. При этом давление газа внутри будущей звезды уравновешивает притяжение и газовый шар перестает сжиматься. Протозвезда становится звездой. Чтобы пройти эту самую раннюю стадию своей эволюции, протозвездам нужно сравнительно немного времени. Если, например, масса протозвезды больше солнечной, нужно всего лишь несколько миллионов лет, если меньше - несколько сот миллионов лет. Так как время эволюции протозвезд сравнительно невелико, эту самую раннюю фазу развития звезды обнаружить трудно. Все же звезды в такой стадии, по-видимому, наблюдаются. Мы имеем в виду очень интересные звезды типа Т Тельца, обычно погруженные в темные туманности. В 1966 г. совершенно неожиданно выявилась возможность наблюдать протозвезды на ранних стадиях их эволюции. Мы уже упоминали в третьей главе этой книги об открытии методом радиоастрономии ряда молекул в межзвездной среде, прежде всего гидроксила ОН и паров воды Н2О. Велико же было удивление радиоастрономов, когда при обзоре неба на волне 18 см, соответствующей радиолинии ОН, были обнаружены яркие, чрезвычайно компактные (т. е. имеющие малые угловые размеры) источники. Это было настолько неожиданно, что первое время отказывались даже верить, что столь яркие радиолинии могут принадлежать молекуле гидроксила. Была высказана гипотеза, что эти линии принадлежат какой-то неизвестной субстанции, которой сразу же дали "подходящее" имя "мистериум". Однако "мистериум" очень скоро разделил судьбу своих оптических "братьев" - "небулия" и "корония". Дело в том, что многие десятилетия яркие линии туманностей и солнечной короны не поддавались отождествлению с какими бы то ни было известными спектральными линиями. Поэтому их приписывали неким, неизвестным на земле, гипотетическим элементам - "небулию" и "коронию". Не будем снисходительно улыбаться над невежеством астрономов начала нашего века: ведь теории атома тогда еще не было! Развитие физики не оставило в периодической системе Менделеева места для экзотических "небожителей": в 1927 г. был развенчан "небулий", линии которого с полной надежностью были отождествлены с "запрещенными" линиями ионизованных кислорода и азота, а в 1939 -1941 гг. было убедительно показано, что загадочные линии "корония" принадлежат многократно ионизованным атомам железа, никеля и кальция. Если для "развенчания" "небулия" и "кодония" потребовались десятилетия, то уже через несколько недель после открытия стало ясно, что линии "мистериума" принадлежат обыкновенному гидроксилу, но только находящемуся в необыкновенных условиях. Дальнейшие наблюдения, прежде всего, выявили, что источники "мистериума" имеют исключительно малые угловые размеры. Это было показано с помощью тогда еще нового, весьма эффективного метода исследовании, получившего название "радиоинтерферометрия на сверхдлинных базах". Суть метода сводится к одновременным наблюдениям источников на двух радиотелескопах, удаленных друг от друга на расстояния в несколько тысяч км. Как оказывается, угловое разрешение при этом определяется отношением длины волны к расстоянию между радиотелескопами. В нашем случае эта величина может быть ~3х10 -8 рад или несколько тысячных секунды дуги! Заметим, что в оптической астрономии такое угловое разрешение пока совершенно недостижимо. Такие наблюдения показали, что существуют по крайней мере три класса источников "мистериума". Нас здесь будут интересовать источники 1 класса. Всё они находятся внутри газовых ионизованных туманностей, например в знаменитой туманности Ориона. Как уже говорилось, их размеры чрезвычайно малы, во много тысяч раз меньше размеров туманности. Всего интереснее, что они обладают сложной пространственной структурой. Рассмотрим, например, источник, находящийся в туманности, получившей название W3.

    Рис. 13. Профили четырех компонент линии гидроксила

    На рис. 13 приведен профиль линии ОН, излучаемый этим источником. Как видим, он состоит из большого количества узких ярких линий. Каждой линии соответствует определенная скорость движения по лучу зрения излучающего эту линию облака. Величина этой скорости определяется эффектом Доплера. Различие скоростей (по лучу зрения) между различными облаками достигает ~10 км/с. Упомянутые выше интерферометрические наблюдения показали, что облака, излучающие каждую линию, пространственно не совпадают. Картина получается такая: внутри области размером приблизительно 1,5 секунды дуги движутся с разными скоростями около 10 компактных облаков. Каждое облако излучает одну определенную (по частоте) линию. Угловые размеры облаков очень малы, порядка нескольких тысячных секунды дуги. Так как расстояние до туманности W3 известно (около 2000 пк), то угловые размеры легко могут быть переведены в линейные. Оказывается, что линейные размеры области, в которой движутся облака, порядка 10 -2 пк, а размеры каждого облака всего лишь на порядок величины больше расстояния от Земли до Солнца. Возникают вопросы: что это за облака и почему они так сильно излучают в радиолиниях гидроксила? На второй вопрос ответ был получен довольно скоро. Оказалось, что механизм излучения вполне подобен тому, который наблюдался в лабораторных мазерах и лазерах. Итак, источники "мистериума" - это гигантские, природные космические мазеры, работающие на волне линии гидроксила, длина которой 18 см. Именно в мазерах (а на оптических и инфракрасных частотах - в лазерах) достигается огромная яркость в линии, причем спектральная ширина ее мала. Как известно, усиление излучения в линиях благодаря такому эффекту возможно тогда, когда среда, в которой распространяется излучение, каким-либо способом "активирована". Это означает, что некоторый "сторонний" источник энергии (так называемая "накачка") делает концентрацию атомов или молекул на исходном (верхнем) уровне аномально высокой. Без постоянно действующей "накачки" мазер или лазер невозможны. Вопрос о природе механизма "накачки" космических мазеров пока еще окончательно не решен. Однако скорее всего "накачкой" служит достаточно мощное инфракрасное излучение. Другим возможным механизмом "накачки" могут быть некоторые химические реакции. Стоит прервать наш рассказ о космических мазерах для того, чтобы подумать, с какими удивительными явлениями сталкиваются астрономы в космосе. Одно из величайших технических изобретений нашего бурного века, играющее немалую роль в переживаемой нами теперь научно-технической революции, запросто реализуется в естественных условиях и притом - в громадном масштабе! Поток радиоизлучения от некоторых космических мазеров настолько велик, что мог бы быть обнаружен даже при техническом уровне радиоастрономии лет 35 тому назад, т. е. еще до изобретения мазеров и лазеров! Для этого надо было "только" знать точную длину волны радиолинии ОН и заинтересоваться проблемой. Кстати, это не первый случай, когда в естественных условиях реализуются важнейшие научно-технические проблемы, стоящие перед человечеством. Термоядерные реакции, поддерживающие излучение Солнца и звезд (см. ниже), стимулировали разработку и осуществление проектов получения на Земле ядерного "горючего", которое в будущем должно решить все наши энергетические проблемы. Увы, мы пока еще далеки от решения этой важнейшей задачи, которую природа решила "запросто". Полтора века тому назад основатель волновой теории света Френель заметил (по другому поводу, конечно): "Природа смеется над нашими трудностями". Как видим, замечание Френеля еще более справедливо в наши дни. Вернемся, однако, к космическим мазерам. Хотя механизм "накачки" этих мазеров пока еще не совсем ясен, все же можно составить себе грубое представление о физических условиях в облаках, излучающих мазерным механизмом линию 18 см. Прежде всего, оказывается, что эти облака довольно плотны: в кубическом сантиметре там имеется по крайней мере 10 8 -10 9 частиц, причем существенная (а может быть и большая) часть их - молекулы. Температура вряд ли превышает две тысячи кельвинов, скорее всего она порядка 1000 Кельвинов. Эти свойства резко отличны от свойств даже самых плотных облаков межзвездного газа. Учитывая еще сравнительно небольшие размеры облаков, мы невольно приходим к выводу, что они скорее напоминают протяженные, довольно холодные атмосферы звезд - сверхгигантов. Очень похоже, что эти облака есть не что иное, как ранняя стадия развития протозвезд, следующая сразу за их конденсацией из межзвездной среды. В пользу этого утверждения (которое автор этой книги высказал еще в 1966 г.) говорят и другие факты. В туманностях, где наблюдаются космические мазеры, видны молодые горячие звезды (см. ниже). Следовательно, там недавно закончился и, скорее всего, продолжается и в настоящее время, процесс звездообразования. Пожалуй, самое любопытное это то, что, как показывают радиоастрономические наблюдения, космические мазеры этого типа как бы "погружены" в небольшие, очень плотные облака ионизованного водорода. В этих облаках имеется много космической пыли, что делает их ненаблюдаемыми в оптическом диапазоне. Такие "коконы" ионизуются молодой, горячей звездой, находящейся внутри них. При исследовании процессов звездообразования весьма полезной оказалась инфракрасная астрономия. Ведь для инфракрасных лучей межзвездное поглощение света не так существенно. Мы можем теперь представить следующую картину: из облака межзвездной среды, путем его конденсации, образуется несколько сгустков разной массы, эволюционирующих в протозвезды. Скорость эволюции -различна: для более массивных сгустков она будет больше (см. дальше табл. 2). Поэтому раньше всего превратится в горячую звезду наиболее массивной сгусток, между тем как остальные будут более или менее долго задерживаться на стадии протозвезды. Их-то мы и наблюдаем как источники мазерного излучения в непосредственной близости от "новорожденной" горячей звезды, ионизующей не сконденсировавший в сгустки водород "кокона". Разумеется, эта грубая схема будет в дальнейшем уточняться, причем, конечно, в нее будут внесены существенные изменения. Но факт остается фактом: неожиданно оказалось, что некоторое время (скорее всего - сравнительно короткое) новорожденные протозвезды, образно выражаясь, "кричат" о своем появлении на свет, пользуясь новейшими методами квантовой радиофизики (т. е. мазерами)... Спустя 2 года после открытия космических мазеров на гидроксиле (линия 18 см) - было установлено, что те же источники одновременно излучают (также мазерным механизмом) линию водяных паров, длина волны которой 1,35 см. Интенсивность "водяного" мазера даже больше, чем "гидроксильного". Облака, излучающие линию Н2О, хотя и находятся в том же малом объеме, что и "гидроксильные" облака, движутся с другими скоростями и значительно более компактны. Нельзя исключать, что в близком будущем будут обнаружены и другие мазерные линии * . Таким образом, совершенно неожиданно радиоастрономия превратила классическую проблему звездообразования в ветвь наблюдательной астрономии ** . Оказавшись на главной последовательности и перестав сжиматься, звезда длительно излучает практически не меняя своего положения на диаграмме "спектр - светимость". Ее излучение поддерживается термоядерными реакциями, идущими в центральных областях. Таким образом, главная последовательность представляет собой как бы геометрическое место точек на диаграмме "спектр - светимость", где звезда (в зависимости от ее массы) может длительно и устойчиво излучать благодаря термоядерным реакциям. Место звезды на главной последовательности определяется ее массой. Следует заметить, что имеется еще один параметр, определяющий положение равновесной излучающей звезды на диаграмме "спектр-светимость". Таким параметром является первоначальный химический состав звезды. Если относительное содержание тяжелых элементов уменьшится, звезда "ляжет" на диаграмме ниже. Именно этим обстоятельством объясняется наличие последовательности субкарликов. Как уже говорилось выше, относительное содержание тяжелых элементов у этих звезд в десятки раз меньше, чем у звезд главной последовательности. Время пребывания звезды на главной последовательности определяется ее первоначальной массой. Если масса велика, излучение звезды имеет огромную мощность и она довольно быстро расходует запасы своего водородного "горючего". Так, например, звезды главной последовательности с массой, превышающей солнечную в несколько десятков раз (это горячие голубые гиганты спектрального класса О), могут устойчиво излучать, находясь на этой последовательности всего лишь несколько миллионов лет, в то время как звезды с массой, близкой к солнечной, находятся на главной последовательности 10-15 млрд лет. Ниже приводится табл. 2, дающая вычисленную продолжительность гравитационного сжатия и пребывания на главной последовательности для звезд разных спектральных классов. В этой же таблице приведены значения масс, радиусов и светимостей звезд в солнечных единицах.

    Таблица 2


    лет

    Спектральный класс

    Светимость

    гравитационного сжатия

    пребывания на главной после-довательности

    G2 (Солнце)

    Из таблицы следует, что время пребывания на главной последовательности звезд, более "поздних", чем КО, значительно больше возраста Галактики, который по существующим оценкам близок к 15-20 млрд лет. "Выгорание" водорода (т. е. превращение его в гелий при термоядерных реакциях) происходит только в центральных областях звезды. Это объясняется тем, что звездное вещество перемешивается лишь в центральных областях звезды, где идут ядерные реакции, в то время как наружные слои сохраняют относительное содержание водорода неизменным. Так как количество водорода в центральных областях звезды ограниченно, рано или поздно (в зависимости от массы звезды) он там практически весь "выгорит". Расчеты показывают, что масса и радиус центральной ее области, в которой идут ядерные реакции, постепенно уменьшаются, при этом звезда медленно перемещается, на диаграмме "спектр - светимость" вправо. Этот процесс происходит значительно быстрее у сравнительно массивных звезд. Если представить себе группу одновременно образовавшихся эволюционирующих звезд, то с течением времени главная последовательность на диаграмме "спектр-светимость", построенная для этой группы, будет как бы загибаться вправо. Что же произойдет со звездой, когда весь (или почти весь) водород в ее ядре "выгорит"? Так как выделение энергии в центральных областях звезды прекращается, температура и давление не могут поддерживаться там на уровне, необходимом для противодействия силе тяготения, сжимающей звезду. Ядро звезды начнет сжиматься, а температура его будет повышаться. Образуется очень плотная горячая область, состоящая из гелия (в который превратился водород) с небольшой примесью более тяжелых элементов. Газ в таком состоянии носит название "вырожденного". Он обладает рядом интересных свойств, на которых мы здесь останавливаться не можем. В этой плотной горячей области ядерные реакции происходить не будут, но они будут довольно интенсивно протекать на периферии ядра, в сравнительно тонком слое. Вычисления показывают, что светимость звезды и ее размеры начнут расти. Звезда как бы "разбухает", и начнет "сходить" с главной последовательности, переходя в области красных гигантов. Далее, оказывается, что звезды-гиганты с меньшим содержанием тяжелых элементов будут иметь при одинаковых размерах более высокую светимость. На рис. 14 приведены теоретически рассчитанные эволюционные треки на диаграмме "светимость - температура поверхности" для звезд разной массы. При переходе звезды в стадию красного гиганта скорость ее эволюции значительно увеличивается. Для проверки теории большое значение имеет построение диаграммы "спектр - светимость" для отдельных звездных скоплений. Дело в том, что звезды одного и того же скопления (например. Плеяды) имеют, очевидно, одинаковый возраст. Сравнивая диаграммы "спектр - светимость" для разных скоплений - "старых" и "молодых", можно выяснить, как эволюционируют звезды. На рис. 15 и 16 приведены диаграммы "показатель цвета - светимостью для двух различных звездных скоплений. Скопление NGC 2254 - сравнительно молодое образование.

    Рис. 14. Эволюционные треки для звезд разной массы на диаграмме "светимость-температура"

    Рис. 15. Диаграмма Герцшпрунга - Рессела для звездного скопления NGC 2254


    Рис. 16. Диаграмма Герцшпрунга - Рессела для шарового скопления М 3. По вертикальной оси - относительная звездная величина

    На соответствующей диаграмме отчетливо видна вся главная последовательность, в том числе ее верхняя левая часть, где расположены горячие массивные звезды (показателю-цвета - 0,2 соответствует температура 20 тыс. К, т.е. спектр класса В). Шаровое скопление М 3 - "старый" объект. Ясно видно, что в верхней части главной последовательности диаграммы, построенной для этого скопления, звезд почти нет. Зато ветвь красных гигантов у М 3 представлена весьма богато, в то время как у NGC 2254 красных гигантов очень мало. Это и понятно: у старого скопления М 3 большое число звезд уже успело "сойти" с главной последовательности, в то время как у молодого скопления NGC 2254 это произошло только с небольшим числом сравнительно массивных, быстро эволюционирующих звезд. Обращает на себя внимание, что ветвь гигантов для М 3 идет довольно круто вверх, а у NGC 2254 она - почти горизонтальна. С точки зрения теории это можно объяснить значительно более низким содержанием тяжелых элементов у М 3. И действительно, у звезд шаровых скоплений (так же как и у других звезд, концентрирующихся не столько к галактической плоскости, сколько к галактическому центру) относительное содержание тяжелых элементов незначительно. На диаграмме "показатель цвета - светимость" для М 3 видна еще одна почти горизонтальная ветвь. Аналогичной ветви на диаграмме, построенной для NGC 2254, нет. Теория объясняет появление этой ветви следующим образом. После того как температура сжимающегося плотного гелиевого ядра звезды - красного гиганта - достигнет 100-150 млн К, там начнет идти новая ядерная реакция. Эта реакция состоит в образовании ядра углерода из трех ядер гелия. Как только начнется эта реакция, сжатие ядра прекратится. В дальнейшем поверхностные слои

    звезды увеличивают свою температуру и звезда на диаграмме "спектр - светимость" будет перемещаться влево. Именно из таких звезд образуется третья горизонтальная ветвь диаграммы для М 3.

    Рис. 17. Сводная диаграмма Герцшпрунга - Рессела для 11 звездных скоплений

    На рис. 17 схематически приведена сводная диаграмма "цвет - светимость" для 11 скоплений, из которых два (М 3 и М 92) шаровые. Ясно видно, как "загибаются" вправо и вверх главные последовательности у разных скоплений в полном согласии с теоретическими представлениями, о которых уже шла речь. Из рис. 17 можно сразу определить, какие скопления являются молодыми и какие старыми. Например, "двойное" скопление Х и h Персея молодое. Оно "сохранило" значительную часть главной последовательности. Скопление М 41 старше, еще старше скопление Гиады и совсем старым является скопление М 67, диаграмма "цвет - светимость" для которого очень похожа на аналогичную диаграмму для шаровых скоплений М 3 и М 92. Только ветвь гигантов у шаровых скоплений находится выше в согласии с различиями в химическом составе, о которых говорилось раньше. Таким образом, данные наблюдений полностью подтверждают и обосновывают выводы теории. Казалось бы, трудно ожидать наблюдательной проверки теории процессов в звездных недрах, которые закрыты от нас огромной толщей звездного вещества. И все же теория и здесь постоянно контролируется практикой астрономических наблюдений. Нужно отметить, что составление большого количества диаграмм "цвет - светимость" потребовало огромного труда астрономов-наблюдателей и коренного усовершенствования методов наблюдений. С другой стороны, успехи теории внутреннего строения и эволюции звезд были бы невозможны без современной вычислительной техники, основанной на применении быстродействующих электронных счетных машин. Неоценимую услугу теории оказали также исследования в области ядерной физики, позволившие получить количественные характеристики тех ядерных реакций, которые протекают в звездных недрах. Без преувеличения можно сказать, что разработка теории строения и эволюции звезд является одним из крупнейших достижений астрономии второй половины XX столетия. Развитие современной физики открывает возможность прямой наблюдательной проверки теории внутреннего строения звезд, и в частности Солнца. Речь идет о возможности обнаружения мощного потока нейтрино, который должно испускать Солнце, если в его недрах имеют место ядерные реакции. Хорошо известно, что нейтрино чрезвычайно слабо взаимодействует с другими элементарными частицами. Так, например, нейтрино может почти без поглощения пролететь через всю толщу Солнца, в то время как рентгеновское излучение может пройти без поглощения только через несколько миллиметров вещества солнечных недр. Если представить себе, что через Солнце проходит мощный пучок нейтрино с энергией каждой частицы в

    Наше Солнце светит уже более 4,5 млрд. лет. При этом оно постоянно расходует водород. Абсолютно ясно, что как бы не велики были его запасы, но когда-то они будут исчерпаны. И что же произойдёт со светилом? На этот вопрос есть ответ. Жизненный цикл звезды можно изучить по другим аналогичным космическим образованиям. Ведь в космосе существуют настоящие патриархи, возраст которых составляет 9-10 млрд. лет. А есть совсем юные звёздочки. Им от роду не более нескольких десятков млн. лет.

    Следовательно, наблюдая за состояние различных звёзд, которыми "усыпана" Вселенная, можно понять, как они себя ведут с течением времени. Здесь можно провести аналогию с наблюдателем-инопланетянином. Он прилетел на Землю и стал изучать людей: детей, взрослых, стариков. Таким образом, за совсем короткий период времени он понял, какие изменения происходят с людьми в течение жизни.

    В настоящее время Солнце является жёлтым карликом - 1
    Пройдут миллиарды лет, и оно станет красным гигантом - 2
    А затем превратится в белого карлика - 3

    Поэтому можно со всей уверенностью сказать, что когда запасы водорода в центральной части Солнца будут исчерпаны, термоядерная реакция не прекратится . Зона, где будет продолжаться этот процесс, начнёт сдвигаться к поверхности нашего светила. Но при этом силы гравитации уже не смогут влиять на давление, которое образуется в результате термоядерной реакции.

    Как следствие, звезда начнёт разрастаться в размерах и постепенно превратится в красного гиганта . Это космический объект поздней стадии эволюции. Но таковым же он бывает и на ранней стадии во время звёздообразования. Только во втором случае красный гигант сжимается и превращается в звезду главной последовательности . То есть в такую, в которой идёт реакция синтеза гелия из водорода. Одним словом, с чего жизненный цикл звезды начинается, тем и заканчивается.

    Наше Солнце увеличится в размерах настолько, что поглотит ближайшие планеты. Это Меркурий , Венера и Земля . Но не надо пугаться. Умирать светило начнёт через несколько млрд. лет. За это время сменятся десятки, а может и сотни цивилизаций. Человек ещё не раз возьмёт в руки дубину, а по прошествию тысячелетий опять сядет за компьютер. Это обычная цикличность, на которой базируется вся Вселенная.

    Но превращение в красного гиганта ещё не означает конец. Термоядерная реакция будет отбрасывать в космос внешнюю оболочку. А в центре будет оставаться лишённое энергии гелиевое ядро. Под действием сил тяготения оно будет сжиматься и, в конце концов, превратится в чрезвычайно плотное с большой массой космическое образование. Такие остатки потухших и медленно остывающих звёзд называются белыми карликами .

    У нашего белого карлика радиус будет в 100 раз меньше радиуса Солнца, а светимость уменьшится в 10 тыс. раз. При этом масса будет сравнимой с нынешней солнечной, а плотность будет больше в миллион раз. Таких белых карликов в нашей Галактике очень много. Их численность составляет 10% от общего числа звёзд.

    Надо отметить, что белые карлики бывают водородными и гелиевыми. Но мы не будем лезть в дебри, а только заметим, что при сильном сжатии может наступить гравитационный коллапс. А это чревато колоссальным взрывом. При этом наблюдается вспышка сверхновой звезды. Термин "сверхновый" характеризует не возраст, а яркость вспышки. Просто белого карлика долго не было видно в космической бездне, и вдруг появилось яркое свечение.

    Большая часть взорвавшейся сверхновой звезды разлетается в пространстве с огромной скоростью. А оставшаяся центральная часть сжимается в ещё более плотное образование и называется нейтронной звездой . Это конечный продукт звёздной эволюции. Его масса сравнима с солнечной, а радиус достигает всего лишь нескольких десятков км. Один куб. см нейтронной звезды может весить миллионы тонн. В космосе таких образований довольно много. Их количество примерно в тысячу раз меньше обычных солнц, которыми усыпано ночное небо Земли.

    Надо сказать, что жизненный цикл звезды напрямую связан с её массой. Если она соответствует массе нашего Солнца или меньше её, то в конце жизни появляется белый карлик. Однако существуют светила, которые в десятки и сотни раз больше Солнца.

    Когда такие гиганты сжимаются в процессе старения, то они так искажают пространство и время, что вместо белого карлика появляется чёрная дыра . Её гравитационное притяжение так велико, что его не могут преодолеть даже те объекты, которые движутся со скоростью света. Размеры дыры характеризует гравитационный радиус . Это радиус сферы, ограниченной горизонтом событий . Он представляет собой пространственно-временной предел. Любое космическое тело, преодолев его, исчезает навсегда и никогда не возвращается обратно.

    О чёрных дырах существует много теорий. Все они базируются на теории гравитации, так как именно гравитация является одной из важнейших сил Вселенной. А основное её качество - универсальность . По-крайней мере, в наши дни не обнаружено ни одного космического объекта, у которого бы отсутствовало гравитационное взаимодействие.

    Есть предположение, что через чёрную дыру можно попасть в параллельный мир. То есть это канал в другое измерение. Всё возможно, но любое утверждение требует практических доказательств. Однако пока ещё никто из смертных не смог осуществить подобный эксперимент.

    Таким образом, жизненный цикл звезды состоит из нескольких стадий. В каждой из них светило выступает в определённом качестве, которое кардинально отличается от предыдущих и будущих. В этом и заключается неповторимость и таинственность космического пространства. Знакомясь с ним, невольно начинаешь думать, что человек тоже проходит несколько стадий в своём развитии. А та оболочка, в которой мы существуем сейчас, является лишь переходным этапом к какому-то иному состоянию. Но это умозаключение опять же требует практического подтверждения .