Школьная энциклопедия. Закон сохранения импульса, кинетическая и потенциальные энергии, мощность силы

ЗАКОНЫ СОХРАНЕНИЯ ИМПУЛЬСА И МОМЕНТА

ИМПУЛЬСА

Учебная цель: добиться понимания физической сущности законов сохранения импульса и момент импульса. Привить навыки самостоятельного решения задач с применением этих законов.

Литература

Основная: Детлаф А. А., Яворский Б.М. Курс физики. – М.: Высшая школа, 1989.– Гл.5, § 5.1 – 5.3.

Дополнительная: Савельев И.В. Курс общей физики. – М.: Наука, 1987. – Т.1, гл.3, § 27 – 29.

Контрольные вопросы для подготовки к занятию

1. Что называется импульсом тела? Импульсом силы? Их единицы измерения.

2. Cформулируйте определение замкнутой системы тел.

3. Сформулируйте и запишите закон сохранения импульса для системы тел?

4. Что называется коэффициентом восстановления? От чего он зависит?

5. Что называется ударом, упругим ударом, неупругим ударом?

6. Что называется моментом импульса? Единица измерения в СИ.

7. Сформулируйте и запишите закон сохранения момента импульса для системы тел и одного тела. Для каких систем он справедлив?

Краткие теоретические сведения и основные формулы

Импульсом тела называется физическая векторная величина, равная произведению массы тела на его скорость и имеющая направление скорости

Импульс – это мера механического движения тела с заданной массой.

Для изменения импульса тела необходимо, чтобы на него подействовала сила. Изменение импульса будет зависеть не только от величины силы, но также и от времени её действия.

Импульсом силы называется векторная физическая величина равная произведению силы и времени её действия, т.е.
.

Понятием импульса силы широко пользуются при решении задач о движении нескольких взаимодействующих тел.

Мысленно выделенная совокупность материальных точек (тел), движущихся согласно законам классической механики и взаимодействующих друг с другом и с телами, не включёнными в состав этой совокупности, называется механической системой. Силы взаимодействия между телами механической системы называются внутренними. Силы, с которыми взаимодействуют тела, не входящие в систему, называются внешними.

Механическая система тел, на которую не действуют внешние силы
называется замкнутой, или изолированной. В изолированной системе геометрическая сумма импульсов входящих в неё тел, остаётся постоянной, то есть

Закон сохранения импульса нашёл широкое применение при ударе тел.

Ударом называется кратковременное взаимодействие тел, возникающее в результате их столкновения.

При соударении тел друг с другом они претерпевают деформацию. При этом кинетическая энергия, которой обладали тела перед ударом, частично или полностью переходит в потенциальную энергию упругой деформации и в так называемую внутреннюю энергию тел.

Для учёта потерь энергии вводится коэффициент восстановления, который зависит только от физических свойств материала тел. Он определяется отношением нормальной составляющей (по отношению к поверхности соударения) относительной скорости после удара
к её величине до удара
(рис.4.1):

Удар называется абсолютно упругим, если после удара возникшие в телах деформации полностью исчезают (кинетическая энергия тела до и после удара остаётся неизменной, k = 1).

Удар называется абсолютно неупругим, если после удара возникшие в телах деформации полностью сохраняются (k = 0). После абсолютно неупругого удара тела движутся с общей скоростью.

При неупругом центральном ударе двух тел с массами и общая скорость движение этих тел после удара может быть определена из закона сохранения импульса:

где - скорость первого тела до удара; - скорость второго тела до удара.

Часть кинетической энергии тел до удара пойдёт на работу деформации

При упругом центральном ударе тела после удара будут двигаться с различными скоростями. Скорость первого тела после удара

Скорость второго тела после удара

При решении задач механики в незамкнутых системах применить закон сохранения импульса можно, если:

а) внешние силы действуют, но результирующая этих сил равна нулю;

б) проекция суммы всех внешних сил на какое-то направление равна нулю, следовательно, проекция импульса на это направление сохраняется, хотя сам вектор импульса не остаётся постоянным.

Моментом импульса тела относительно неподвижной оси называется векторная физическая величина, равная произведению момента инерции тела относительно той же оси на угловую скорость тела:


Момент импульса системы тел есть векторная сумма моментов импульсов всех тел системы

Закон сохранения момента импульса: есть результирующий момент внешних сил, приложенных к системе, равен нулю
, то момент импульса системы есть величина постоянная, то есть

Для двух тел:

где J 1 , J 2 , , – момент инерции и угловые скорости тел до взаимодействия;
- те же величины после взаимодействия.

Для одного тела, момент инерции которого может меняться:

где J 1 и J 2 – начальное и конечное значение момента инерции; и – начальная конечная угловые скорости тела.

В задачах по общему курсу физики обычно рассматривают вращение твердого тела лишь вокруг неподвижной оси или оси, перемещающейся в пространстве параллельно самой себе. В этом случае физические величины, характеризующие вращательное движение тела
направлены вдоль оси вращения. Это позволяет упростить запись уравнений вращательного движения тела. Выбрав ось вращения за ось проекций, все уравнения можно записать в скалярной форме. При этом знаки величин, , М , L определяют следующим образом. Некоторое направление вращения (по часовой стрелке или против неё) выбирают за положительное. Величины , L , М берутся со знаком плюс, если их направление соответствует выбранному положительному направлению, в противном случае – со знаком минус. Знак величины всегда совпадает со знаком М .

При ускоренном вращении тела знаки всех четырёх величин совпадают; при замедленном движении две пары величин - , L и М , - имеют противоположные знаки.

Сопоставление основных величин и уравнений, определяющих вращательное движение тела вокруг неподвижной оси и его поступательное движение, подчёркивающее их аналогию, приведено в таб. 4.1.

Т а б л и ц а 4.1

Поступательное движение

Вращательное движение

Равнодействующая внешних сил

Основное уравнение динамики

Суммарный момент внешних сил – М

Основное уравнение динамики:

1. Как вам известно, результат действия силы зависит от ее модуля, точки приложения и направления. Действительно, чем больше сила, действующая на тело, тем большее ускорение оно приобретает. От направления силы зависит и направление ускорения. Так, приложив небольшую силу к ручке, мы легко открываем дверь, если ту же силу приложить около петель, на которых висит дверь, то ее можно и не открыть.

Опыты и наблюдения свидетельствуют о том, что результат действия силы (взаимодействия) зависит не только от модуля силы, но и от времени ее действия. Проделаем опыт. К штативу на нити подвесим груз, к которому снизу привязана еще одна нить (рис. 59). Если за нижнюю нить резко дернуть, то она оборвется, а груз останется висеть на верхней нити. Если же теперь медленно потянуть за нижнюю нить, то оборвется верхняя нить.

Импульсом силы называют векторную физическую величину, равную произведению силы на время ее действия Ft .

Единица импульса силы в СИ - ньютон‑секунда (1 Н с ): [Ft ] = 1 Н с.

Вектор импульса силы совпадает по направлению с вектором силы.

2. Вы также знаете, что результат действия силы зависит от массы тела, на которое эта сила действует. Так, чем больше масса тела, тем меньшее ускорение оно приобретает при действии одной и той же силы.

Рассмотрим пример. Представим себе, что на рельсах стоит груженая платформа. С ней сталкивается движущийся с некоторой скоростью вагон. В результате столкновения платформа приобретет ускорение и переместится на некоторое расстояние. Если же движущийся с той же скоростью вагон столкнется с легкой вагонеткой, то она в результате взаимодействия переместится на существенно большее расстояние, чем груженая платформа.

Другой пример. Предположим, что к мишени подлетает пуля со скоростью 2 м/ с. Пуля, вероятнее всего, отскочит от мишени, оставив на ней лишь небольшую вмятину. Если же пуля будет лететь со скоростью 100 м/с, то она пробьет мишень.

Таким образом, результат взаимодействия тел зависит от их массы и скорости движения.

Импульсом тела называют векторную физическую величину, равную произведению массы тела и его скорости.

p = m v .

Единица импульса тела в СИ - килограмм-метр в секунду (1 кг м/с): [p ] = [m ][v ] = 1 кг 1м/ с = 1 кг м/с.

Направление импульса тела совпадает с направлением его скорости.

Импульс - величина относительная, его значение зависит от выбора системы отсчета. Это и понятно, поскольку относительной величиной является скорость.

3. Выясним, как связаны импульс силы и импульс тела.

По второму закону Ньютона:

F = ma .

Подставив в эту формулу выражение для ускорения a = , получим:

F = , или
Ft = mv mv 0 .

В левой части равенства стоит импульс силы; в правой части равенства - разность конечного и начального импульсов тела,т. е. изменение импульса тела.

Таким образом,

импульс силы равен изменению импульса тела.

Ft = D(m v ).

Это иная формулировка второго закона Ньютона. Именно так сформулировал его Ньютон.

4. Предположим, что сталкиваются два шарика движущиеся по столу. Любые взаимодействующие тела, в данном случае шарики, образуют систему . Между телами системы действуют силы: сила действия F 1 и сила противодействия F 2 . При этом сила действия F 1 по третьему закону Ньютона равна силе противодействия F 2 и направлена противоположно ей: F 1 = –F 2 .

Силы, с которыми тела системы взаимодействуют между собой, называют внутренними силами.

Помимо внутренних сил, на тела системы действуют внешние силы. Так, взаимодействующие шарики притягиваются к Земле, на них действует сила реакции опоры. Эти силы являются в данном случае внешними силами. Во время движения на шарики действуют сила сопротивления воздуха и сила трения. Они тоже являются внешними силами по отношению к системе, которая в данном случае состоит из двух шариков.

Внешними силами называют силы, которые действуют на тела системы со стороны других тел.

Будем рассматривать такую систему тел, на которую не действуют внешние силы.

Замкнутой системой называют систему тел, взаимодействующих между собой и не взаимодействующих с другими телами.

В замкнутой системе действуют только внутренние силы.

5. Рассмотрим взаимодействие двух тел, составляющих замкнутую систему. Масса первого тела m 1 , его скорость до взаимодействия v 01 , после взаимодействия v 1 . Масса второго тела m 2 , его скорость до взаимодействия v 02 , после взаимодействия v 2 .

Силы, с которыми взаимодействуют тела, по третьему закону:F 1 = –F 2 . Время действия сил одно и то же, поэтому

F 1 t = –F 2 t .

Для каждого тела запишем второй закон Ньютона:

F 1 t = m 1 v 1 – m 1 v 01 , F 2 t = m 2 v 2 – m 2 v 02 .

Поскольку левые части равенств равны, то равны и их правые части, т. е.

m 1 v 1 m 1 v 01 = –(m 2 v 2 – m 2 v 02).

Преобразовав это равенство, получим:

m 1 v 01 + m 1 v 02 = m 2 v 1 + m 2 v 2 .

В левой части равенства стоит сумма импульсов тел до взаимодействия, в правой - сумма импульсов тел после взаимодействия. Как видно из этого равенства, импульс каждого тела при взаимодействии изменился, а сумма импульсов осталась неизменной.

Геометрическая сумма импульсов тел, составляющих замкнутую систему, остается постоянной при любых взаимодействиях тел этой системы.

В этом состоит закон сохранения импульса .

6. Замкнутая система тел - это модель реальной системы. В природе нет таких систем, на которые не действовали бы внешние силы. Однако в ряде случаев системы взаимодействующих тел можно рассматривать как замкнутые. Это возможно в следующих случаях: внутренние силы много больше внешних сил, время взаимодействия мало, внешние силы компенсируют друг друга. Кроме того, может быть равна нулю проекция внешних сил на какое‑либо направление и тогда закон сохранения импульса выполняется для проекций импульсов взаимодействующих тел на это направление.

7. Пример решения задачи

Две железнодорожные платформы движутся навстречу друг другу со скоростями 0,3 и 0,2 м/с. Массы платформ соответственно равны 16 и 48 т. С какой скоростью и в каком направлении будут двигаться платформы после автосцепки?

Дано :

СИ

Решение

v 01 = 0,3 м/с

v 02 = 0,2 м/с

m 1 = 16 т

m 2 = 48 т

v 1 = v 2 = v

v 02 =

v 02 =

1,6104кг

4,8104кг

Изобразим на рисунке направление движения платформ до и после взаимодействия (рис. 60).

Силы тяжести, действующие на платформы, и силы реакции опоры коммпенсируют друг друга. Систему из двух платформ можно считать замкнутой

vx ?

и применить к ней закон сохранения импульса.

m 1 v 01 + m 2 v 02 = (m 1 + m 2)v .

В проекциях на ось X можно записать:

m 1 v 01x + m 2 v 02x = (m 1 + m 2)v x .

Так как v 01x = v 01 ; v 02x = –v 02 ; v x = –v , то m 1 v 01 – m 2 v 02 = –(m 1 + m 2)v.

Откуда v = – .

v = – = 0,75 м/с.

После сцепки платформы будут двигаться в ту сторону, в которую до взаимодействия двигалась платформа с большей массой.

Ответ: v = 0,75 м/с; направлена в сторону движения тележки с большей массой.

Вопросы для самопроверки

1. Что называют импульсом тела?

2. Что называют импульсом силы?

3. Как связаны импульс силы и изменение импульса тела?

4. Какую систему тел называют замкнутой?

5. Сформулируйте закон сохранения импульса.

6. Каковы границы применимости закона сохранения импульса?

Задание 17

1. Чему равен импульс тела массой 5 кг, движущегося со скоростью 20 м/с?

2. Определите изменение импульса тела массой 3 кг за 5 с под действием силы 20 Н.

3. Определите импульс автомобиля массой 1,5 т, движущегося со скоростью 20 м/с в системе отсчета, связанной: а) с неподвижным относительно Земли автомобилем; б) с автомобилем, движущимся в ту же сторону с такой же скоростью; в) с автомобилем, движущимся с такой же скоростью, но в противоположную сторону.

4. Мальчик массой 50 кг спрыгнул с неподвижной лодки массой 100 кг, расположенной в воде около берега. С какой скоростью отъехала лодка от берега, если скорость мальчика направлена горизонтально и равна 1 м/с?

5. Снаряд массой 5 кг, летевший горизонтально, разрывался на два осколка. Какова скорость снаряда, если осколок массой 2 кг при разрыве приобрел скорость 50 м/с, а второй массой 3 кг - 40 м/с? Скорости осколков направлены горизонтально.

Импульс тела

Импульсом тела называется величина, равная произведению массы тела на его скорость.

Следует помнить, что речь идет о теле, которое можно представить как материальную точку. Импульс тела ($р$) называют также количеством движения. Понятие количества движения было введено в физику Рене Декартом (1596—1650). Термин «импульс» появился позже (impulsus в переводе с латинского означает «толчок»). Импульс является векторной величиной (как и скорость) и выражается формулой:

$p↖{→}=mυ↖{→}$

Направление вектора импульса всегда совпадает с направлением скорости.

За единицу импульса в СИ принимают импульс тела массой $1$ кг, движущегося со скоростью $1$ м/с, следовательно, единицей импульса является $1$ кг $·$ м/с.

Если на тело (материальную точку) действует постоянная сила в течение промежутка времени $∆t$, то постоянным будет и ускорение:

$a↖{→}={{υ_2}↖{→}-{υ_1}↖{→}}/{∆t}$

где, ${υ_1}↖{→}$ и ${υ_2}↖{→}$ — начальная и конечная скорости тела. Подставив это значение в выражение второго закона Ньютона, получим:

${m({υ_2}↖{→}-{υ_1}↖{→})}/{∆t}=F↖{→}$

Раскрыв скобки и воспользовавшись выражением для импульса тела, имеем:

${p_2}↖{→}-{p_1}↖{→}=F↖{→}∆t$

Здесь ${p_2}↖{→}-{p_1}↖{→}=∆p↖{→}$ — изменение импульса за время $∆t$. Тогда предыдущее уравнение примет вид:

$∆p↖{→}=F↖{→}∆t$

Выражение $∆p↖{→}=F↖{→}∆t$ представляет собой математическую запись второго закона Ньютона.

Произведение силы на время ее действия называют импульсом силы . Поэтому изменение импульса точки равно изменению импульса силы, действующей на нее.

Выражение $∆p↖{→}=F↖{→}∆t$ называется уравнением движения тела . Следует заметить, что одно и то же действие — изменение импульса точки — может быть получено малой силой за большой промежуток времени и большой силой за малый промежуток времени.

Импульс системы тел. Закон изменения импульса

Импульсом (количеством движения) механической системы называется вектор, равный сумме импульсов всех материальных точек этой системы:

${p_{сист}}↖{→}={p_1}↖{→}+{p_2}↖{→}+...$

Законы изменения и сохранения импульса являются следствием второго и третьего законов Ньютона.

Рассмотрим систему, состоящую из двух тел. Силы ($F_{12}$ и $F_{21}$ на рисунке, с которыми тела системы взаимодействуют между собой, называются внутренними.

Пусть кроме внутренних сил на систему действуют внешние силы ${F_1}↖{→}$ и ${F_2}↖{→}$. Для каждого тела можно записать уравнение $∆p↖{→}=F↖{→}∆t$. Сложив левые и правые части этих уравнений, получим:

${∆p_1}↖{→}+{∆p_2}↖{→}=({F_{12}}↖{→}+{F_{21}}↖{→}+{F_1}↖{→}+{F_2}↖{→})∆t$

Согласно третьему закону Ньютона ${F_{12}}↖{→}=-{F_{21}}↖{→}$.

Следовательно,

${∆p_1}↖{→}+{∆p_2}↖{→}=({F_1}↖{→}+{F_2}↖{→})∆t$

В левой части стоит геометрическая сумма изменений импульсов всех тел системы, равная изменению импульса самой системы — ${∆p_{сист}}↖{→}$.С учетом этого равенство ${∆p_1}↖{→}+{∆p_2}↖{→}=({F_1}↖{→}+{F_2}↖{→})∆t$ можно записать:

${∆p_{сист}}↖{→}=F↖{→}∆t$

где $F↖{→}$ — сумма всех внешних сил, действующих на тело. Полученный результат означает, что импульс системы могут изменить только внешние силы, причем изменение импульса системы направлено так же, как суммарная внешняя сила. В этом суть закона изменения импульса механической системы.

Внутренние силы изменить суммарный импульс системы не могут. Они лишь меняют импульсы отдельных тел системы.

Закон сохранения импульса

Из уравнения ${∆p_{сист}}↖{→}=F↖{→}∆t$ вытекает закон сохранения импульса. Если на систему не действуют никакие внешние силы, то правая часть уравнения ${∆p_{сист}}↖{→}=F↖{→}∆t$ обращается в ноль, что означает неизменность суммарного импульса системы:

${∆p_{сист}}↖{→}=m_1{υ_1}↖{→}+m_2{υ_2}↖{→}=const$

Система, на которую не действуют никакие внешние силы или равнодействующая внешних сил равна нулю, называется замкнутой.

Закон сохранения импульса гласит:

Суммарный импульс замкнутой системы тел остается постоянным при любых взаимодействиях тел системы между собой.

Полученный результат справедлив для системы, содержащей произвольное число тел. Если сумма внешних сил не равна нулю, но сумма их проекций на какое-то направление равна нулю, то проекция импульса системы на это направление не меняется. Так, например, система тел на поверхности Земли не может считаться замкнутой из-за силы тяжести, действующей на все тела, однако сумма проекций импульсов на горизонтальное направление может оставаться неизменной (при отсутствии трения), т. к. в этом направлении сила тяжести не действует.

Реактивное движение

Рассмотрим примеры, подтверждающие справедливость закона сохранения импульса.

Возьмем детский резиновый шарик, надуем его и отпустим. Мы увидим, что когда воздух начнет выходить из него в одну сторону, сам шарик полетит в другую. Движение шарика является примером реактивного движения. Объясняется оно законом сохранения импульса: суммарный импульс системы «шарик плюс воздух в нем» до истечения воздуха равен нулю; он должен остаться равным нулю и во время движения; поэтому шарик движется в сторону, противоположную направлению истечения струи, и с такой скоростью, что его импульс по модулю равен импульсу воздушной струи.

Реактивным движением называют движение тела, возникающее при отделении от него с какой- либо скоростью некоторой его части. Вследствие закона сохранения импульса направление движения тела при этом противоположно направлению движения отделившейся части.

На принципе реактивного движения основаны полеты ракет. Современная космическая ракета представляет собой очень сложный летательный аппарат. Масса ракеты складывается из массы рабочего тела (т. е. раскаленных газов, образующихся в результате сгорания топлива и выбрасываемых в виде реактивной струи) и конечной, или, как говорят, «сухой» массы ракеты, остающейся после выброса из ракеты рабочего тела.

Когда реактивная газовая струя с большой скоростью выбрасывается из ракеты, сама ракета устремляется в противоположную сторону. Согласно закону сохранения импульса, импульс $m_{p}υ_p$, приобретаемый ракетой, должен быть равен импульсу $m_{газ}·υ_{газ}$ выброшенных газов:

$m_{p}υ_p=m_{газ}·υ_{газ}$

Отсюда следует, что скорость ракеты

$υ_p=({m_{газ}}/{m_p})·υ_{газ}$

Из этой формулы видно, что скорость ракеты тем больше, чем больше скорость выбрасываемых газов и отношение массы рабочего тела (т. е. массы топлива) к конечной («сухой») массе ракеты.

Формула $υ_p=({m_{газ}}/{m_p})·υ_{газ}$ является приближенной. В ней не учитывается, что по мере сгорания топлива масса летящей ракеты становится все меньше и меньше. Точная формула для скорости ракеты была получена в 1897 г. К. Э. Циолковским и носит его имя.

Работа силы

Термин «работа» был введен в физику в 1826 г. французским ученым Ж. Понселе. Если в обыденной жизни работой называют лишь труд человека, то в физике и, в частности, в механике принято считать, что работу совершает сила. Физическую величину работы обычно обозначают буквой $А$.

Работа силы — это мера действия силы, зависящая от ее модуля и направления, а также от перемещения точки приложения силы. Для постоянной силы и прямолинейного перемещения работа определяется равенством:

$A=F|∆r↖{→}|cosα$

где $F$ — сила, действующая на тело, $∆r↖{→}$ — перемещение, $α$ — угол между силой и перемещением.

Работа силы равна произведению модулей силы и перемещения и косинуса угла между ними, т. е. скалярному произведению векторов $F↖{→}$ и $∆r↖{→}$.

Работа — величина скалярная. Если $α 0$, а если $90°

При действии на тело нескольких сил полная работа (сумма работ всех сил) равна работе результирующей силы.

Единицей работы в СИ является джоуль ($1$ Дж). $1$ Дж — это работа, которую совершает сила в $1$ Н на пути в $1$ м в направлении действия этой силы. Эта единица названа в честь английского ученого Дж. Джоуля (1818-1889): $1$ Дж = $1$ Н $·$ м. Часто применяются также килоджоули и миллиджоули: $1$ кДж $= 1 000$ Дж, $1$ мДж $= 0.001$ Дж.

Работа силы тяжести

Рассмотрим тело, скользящее по наклонной плоскости с углом наклона $α$ и высотой $Н$.

Выразим $∆x$ через $H$ и $α$:

$∆x={H}/{sinα}$

Учитывая, что сила тяжести $F_т=mg$ составляет угол ($90° - α$) с направлением перемещения, используя формулу $∆x={H}/{sin}α$, получим выражение для работы силы тяжести $A_g$:

$A_g=mg·cos(90°-α)·{H}/{sinα}=mgH$

Из этой формулы видно, что работа силы тяжести зависит от высоты и не зависит от угла наклона плоскости.

Отсюда следует, что:

  1. работа силы тяжести не зависит от формы траектории, по которой движется тело, а лишь от начального и конечного положения тела;
  2. при перемещении тела по замкнутой траектории работа силы тяжести равна нулю, т. е. сила тяжести — консервативная сила (консервативными называются силы, обладающие таким свойством).

Работа сил реакции , равна нулю, поскольку сила реакции ($N$) направлена перпендикулярно перемещению $∆x$.

Работа силы трения

Сила трения направлена противоположно перемещению $∆x$ и составляет с ним угол $180°$, поэтому работа силы трения отрицательна:

$A_{тр}=F_{тр}∆x·cos180°=-F_{тр}·∆x$

Так как $F_{тр}=μN, N=mg·cosα, ∆x=l={H}/{sinα},$ то

$A_{тр}=μmgHctgα$

Работа силы упругости

Пусть на нерастянутую пружину длиной $l_0$ действует внешняя сила $F↖{→}$, растягивая ее на $∆l_0=x_0$. В положении $x=x_0F_{упр}=kx_0$. После прекращения действия силы $F↖{→}$ в точке $х_0$ пружина под действием силы $F_{упр}$ сжимается.

Определим работу силы упругости при изменении координаты правого конца пружины от $х_0$ до $х$. Поскольку сила упругости на этом участке изменяется линейно, в законе Гука можно использовать ее среднее значение на этом участке:

$F_{упр.ср.}={kx_0+kx}/{2}={k}/{2}(x_0+x)$

Тогда работа (с учетом того, что направления ${F_{упр.ср.}}↖{→}$ и ${∆x}↖{→}$ совпадают) равна:

$A_{упр}={k}/{2}(x_0+x)(x_0-x)={kx_0^2}/{2}-{kx^2}/{2}$

Можно показать, что вид последней формулы не зависит от угла между ${F_{упр.ср.}}↖{→}$ и ${∆x}↖{→}$. Работа сил упругости зависит лишь от деформаций пружины в начальном и конечном состояниях.

Таким образом, сила упругости, подобно силе тяжести, является консервативной силой.

Мощность силы

Мощность — физическая величина, измеряемая отношением работы к промежутку времени, в течение которого она произведена.

Другими словами, мощность показывает, какая работа совершается за единицу времени (в СИ — за $1$ с).

Мощность определяется формулой:

где $N$ — мощность, $А$ — работа, совершенная за время $∆t$.

Подставив в формулу $N={A}/{∆t}$ вместо работы $A$ ее выражение $A=F|{∆r}↖{→}|cosα$, получим:

$N={F|{∆r}↖{→}|cosα}/{∆t}=Fυcosα$

Мощность равна произведению модулей векторов силы и скорости на косинус угла между этими векторами.

Мощность в системе СИ измеряется в ваттах (Вт). Один ватт ($1$ Вт) — это такая мощность, при которой за $1$ с совершается работа $1$ Дж: $1$ Вт $= 1$ Дж/с.

Эта единица названа в часть английского изобретателя Дж. Ватта (Уатта), построившего первую паровую машину. Сам Дж. Ватт (1736-1819) пользовался другой единицей мощности — лошадиной силой (л. с.), которую он ввел для того, чтобы можно было сравнивать работоспособности паровой машины и лошади: $1$ л.с. $= 735.5$ Вт.

В технике часто применяются более крупные единицы мощности — киловатт и мегаватт: $1$ кВт $= 1000$ Вт, $1$ МВт $= 1000000$ Вт.

Кинетическая энергия. Закон изменения кинетической энергии

Если тело или несколько взаимодействующих между собой тел (система тел) могут совершать работу, то говорят, что они обладают энергией.

Слово «энергия» (от греч. energia — действие, деятельность) нередко употребляется в быту. Так, например, людей, которые могут быстро выполнять работу, называют энергичными, обладающими большой энергией.

Энергия, которой обладает тело вследствие движения, называется кинетической энергией.

Как и в случае определения энергии вообще, о кинетической энергии можно сказать, что кинетическая энергия — это способность движущегося тела совершать работу.

Найдем кинетическую энергию тела массой $m$, движущегося со скоростью $υ$. Поскольку кинетическая энергия — это энергия, обусловленная движением, нулевым состоянием для нее является то состояние, в котором тело покоится. Найдя работу, необходимую для сообщения телу данной скорости, мы найдем его кинетическую энергию.

Для этого подсчитаем работу на участке перемещения $∆r↖{→}$ при совпадении направлений векторов силы $F↖{→}$ и перемещения $∆r↖{→}$. В этом случае работа равна

где $∆x=∆r$

Для движения точки с ускорением $α=const$ выражение для перемещения имеет вид:

$∆x=υ_1t+{at^2}/{2},$

где $υ_1$ — начальная скорость.

Подставив в уравнение $A=F·∆x$ выражение для $∆x$ из $∆x=υ_1t+{at^2}/{2}$ и воспользовавшись вторым законом Ньютона $F=ma$, получим:

$A=ma(υ_1t+{at^2}/{2})={mat}/{2}(2υ_1+at)$

Выразив ускорение через начальную $υ_1$ и конечную $υ_2$ скорости $a={υ_2-υ_1}/{t}$ и подставив в $A=ma(υ_1t+{at^2}/{2})={mat}/{2}(2υ_1+at)$ имеем:

$A={m(υ_2-υ_1)}/{2}·(2υ_1+υ_2-υ_1)$

$A={mυ_2^2}/{2}-{mυ_1^2}/{2}$

Приравняв теперь начальную скорость к нулю: $υ_1=0$, получим выражение для кинетической энергии:

$E_K={mυ}/{2}={p^2}/{2m}$

Таким образом, движущееся тело обладает кинетической энергией. Эта энергия равна работе, которую необходимо совершить, чтобы увеличить скорость тела от нуля до значения $υ$.

Из $E_K={mυ}/{2}={p^2}/{2m}$ следует, что работа силы по перемещению тела из одного положения в другое равна изменению кинетической энергии:

$A=E_{K_2}-E_{K_1}=∆E_K$

Равенство $A=E_{K_2}-E_{K_1}=∆E_K$ выражает теорему об изменении кинетической энергии.

Изменение кинетической энергии тела (материальной точки) за некоторый промежуток времени равно работе, совершенной за это время силой, действующей на тело.

Потенциальная энергия

Потенциальной энергией называется энергия, определяемая взаимным расположением взаимодействующих тел или частей одного и того же тела.

Поскольку энергия определяется как способность тела совершать работу, то потенциальную энергию, естественно, определяют как работу силы, зависящую только от взаимного расположения тел. Таковой является работа силы тяжести $A=mgh_1-mgh_2=mgH$ и работа силы упругости:

$A={kx_0^2}/{2}-{kx^2}/{2}$

Потенциальной энергией тела, взаимодействующего с Землей, называют величину, равную произведению массы $m$ этого тела на ускорение свободного падения $g$ и на высоту $h$ тела над поверхностью Земли:

Потенциальной энергией упруго деформированного тела называют величину, равную половине произведения коэффициента упругости (жесткости) $k$ тела на квадрат деформации $∆l$:

$E_p={1}/{2}k∆l^2$

Работа консервативных сил (тяжести и упругости) с учетом $E_p=mgh$ и $E_p={1}/{2}k∆l^2$ выражается следующим образом:

$A=E_{p_1}-E_{p_2}=-(E_{p_2}-E_{p_1})=-∆E_p$

Эта формула позволяет дать общее определение потенциальной энергии.

Потенциальной энергией системы называется зависящая от положения тел величина, изменение которой при переходе системы из начального состояния в конечное равно работе внутренних консервативных сил системы, взятой с противоположным знаком.

Знак «минус» в правой части уравнения $A=E_{p_1}-E_{p_2}=-(E_{p_2}-E_{p_1})=-∆E_p$ означает, что при совершении работы внутренними силами (например, падение тела на землю под действием силы тяжести в системе «камень — Земля») энергия системы убывает. Работа и изменение потенциальной энергии в системе всегда имеют противоположные знаки.

Поскольку работа определяет лишь изменение потенциальной энергии, то физический смысл в механике имеет только изменение энергии. Поэтому выбор нулевого уровня энергии произволен и определяется исключительно соображениями удобства, например, простотой записи соответствующих уравнений.

Закон изменения и сохранения механической энергии

Полной механической энергией системы называется сумма ее кинетической и потенциальной энергий:

Она определяется положением тел (потенциальная энергия) и их скоростью (кинетическая энергия).

Согласно теореме о кинетической энергии,

$E_k-E_{k_1}=A_p+A_{пр},$

где $А_р$ — работа потенциальных сил, $А_{пр}$ — работа непотенциальных сил.

В свою очередь, работа потенциальных сил равна разности потенциальной энергии тела в начальном $Е_{р_1}$ и конечном $Е_р$ состояниях. Учитывая это, получим выражение для закона изменения механической энергии:

$(E_k+E_p)-(E_{k_1}+E_{p_1})=A_{пр}$

где левая часть равенства — изменение полной механической энергии, а правая — работа непотенциальных сил.

Итак, закон изменения механической энергии гласит:

Изменение механической энергии системы равно работе всех непотенциальных сил.

Механическая система, в которой действуют только потенциальные силы, называется консервативной.

В консервативной системе $А_{пр} = 0$. Отсюда следует закон сохранения механической энергии:

В замкнутой консервативной системе полная механическая энергия сохраняется (не изменяется со временем):

$E_k+E_p=E_{k_1}+E_{p_1}$

Закон сохранения механической энергии выводится из законов механики Ньютона, которые применимы для системы материальных точек (или макрочастиц).

Однако закон сохранения механической энергии справедлив и для системы микрочастиц, где сами законы Ньютона уже не действуют.

Закон сохранения механической энергии является следствием однородности времени.

Однородность времени состоит в том, что при одинаковых начальных условиях протекание физических процессов не зависит от того, в какой момент времени эти условия созданы.

Закон сохранения полной механической энергии означает, что при изменении кинетической энергии в консервативной системе должна меняться и ее потенциальная энергия, так что их сумма остается постоянной. Это означает возможность превращения одного вида энергии в другой.

В соответствии с различными формами движения материи рассматривают различные виды энергии: механическую, внутреннюю (равную сумме кинетической энергии хаотического движения молекул относительно центра масс тела и потенциальной энергии взаимодействия молекул друг с другом), электромагнитную, химическую (которая складывается из кинетической энергии движения электронов и электрической энергии их взаимодействия друг с другом и с атомными ядрами), ядерную и пр. Из сказанного видно, что деление энергии на разные виды достаточно условно.

Явления природы обычно сопровождаются превращением одного вида энергии в другой. Так, например, трение частей различных механизмов приводит к превращению механической энергии в тепло, т. е. во внутреннюю энергию. В тепловых двигателях, наоборот, происходит превращение внутренней энергии в механическую; в гальванических элементах химическая энергия превращается в электрическую и т. д.

В настоящее время понятие энергии является одним из основных понятий физики. Это понятие неразрывно связано с представлением о превращении одной формы движения в другую.

Вот как в современной физике формулируется понятие энергии:

Энергия — общая количественная мера движения и взаимодействия всех видов материи. Энергия не возникает из ничего и не исчезает, она может только переходить из одной формы в другую. Понятие энергии связывает воедино все явления природы.

Простые механизмы. КПД механизмов

Простыми механизмами называются приспособления, изменяющие величину или направление приложенных к телу сил.

Они применяются для перемещения или подъема больших грузов с помощью небольших усилий. К ним относятся рычаг и его разновидности — блоки (подвижный и неподвижный), ворот, наклонная плоскость и ее разновидности — клин, винт и др.

Рычаг. Правило рычага

Рычаг представляет собой твердое тело, способное вращаться вокруг неподвижной опоры.

Правило рычага гласит:

Рычаг находится в равновесии, если приложенные к нему силы обратно пропорциональны их плечам:

${F_2}/{F_1}={l_1}/{l_2}$

Из формулы ${F_2}/{F_1}={l_1}/{l_2}$, применив к ней свойство пропорции (произведение крайних членов пропорции равно произведению ее средних членов), можно получить такую формулу:

Но $F_1l_1=M_1$ — момент силы, стремящейся повернуть рычаг по часовой стрелке, а $F_2l_2=M_2$ — момент силы, стремящейся повернуть рычаг против часовой стрелки. Таким образом, $M_1=M_2$, что и требовалось доказать.

Рычаг начал применяться людьми в глубокой древности. С его помощью удавалось поднимать тяжелые каменные плиты при постройке пирамид в Древнем Египте. Без рычага это было бы невозможно. Ведь, например, для возведения пирамиды Хеопса, имеющей высоту $147$ м, было использовано более двух миллионов каменных глыб, самая меньшая из которых имела массу $2.5$ тонн!

В наше время рычаги находят широкое применение как на производстве (например, подъемные краны), так и в быту (ножницы, кусачки, весы).

Неподвижный блок

Действие неподвижного блока аналогично действию рычага с равными плечами: $l_1=l_2=r$. Приложенная сила $F_1$ равна нагрузке $F_2$, и условие равновесия имеет вид:

Неподвижный блок применяют, когда нужно изменить направление силы, не меняя ее величину.

Подвижный блок

Подвижный блок действует аналогично рычагу, плечи которого составляют: $l_2={l_1}/{2}=r$. При этом условие равновесия имеет вид:

где $F_1$ — приложенная сила, $F_2$ — нагрузка. Применение подвижного блока дает выигрыш в силе в два раза.

Полиспаст (система блоков)

Обычный полиспаст состоит из $n$ подвижных и $n$ неподвижных блоков. Его применив дает выигрыш в силе в $2n$ раз:

$F_1={F_2}/{2n}$

Степенной полиспаст состоит из п подвижных и одного неподвижного блока. Применение степенного полиспаста дает выигрыш в силе в $2^n$ раз:

$F_1={F_2}/{2^n}$

Винт

Винт представляет собой наклонную плоскость, навитую на ось.

Условие равновесия сил, действующих на винт, имеет вид:

$F_1={F_2h}/{2πr}=F_2tgα, F_1={F_2h}/{2πR}$

где $F_1$ — внешняя сила, приложенная к винту и действующая на расстоянии $R$ от его оси; $F_2$ — сила, действующая в направлении оси винта; $h$ — шаг винта; $r$ — средний радиус резьбы; $α$ — угол наклона резьбы. $R$ — длина рычага (гаечного ключа), вращающего винт с силой $F_1$.

Коэффициент полезного действия

Коэффициент полезного действия (КПД) — отношение полезной работы ко всей затраченной работе.

Коэффициент полезного действия часто выражают в процентах и обозначают греческой буквой $η$ («эта»):

$η={A_п}/{A_3}·100%$

где $А_п$ — полезная работа, $А_3$ — вся затраченная работа.

Полезная работа всегда составляет лишь часть полной работы, которую затрачивает человек, используя тот или иной механизм.

Часть совершенной работы тратится на преодоление сил трения. Поскольку $А_3 > А_п$, КПД всегда меньше $1$ (или $< 100%$).

Поскольку каждую из работ в этом равенстве можно выразить в виде произведения соответствующей силы на пройденный путь, то его можно переписать так: $F_1s_1≈F_2s_2$.

Отсюда следует, что, выигрывая с помощью механизма в силе, мы во столько же раз проигрываем в пути, и наоборот . Этот закон называют золотым правилом механики.

Золотое правило механики является приближенным законом, так как в нем не учитывается работа по преодолению трения и силы тяжести частей используемых приспособлений. Тем не менее оно бывает очень полезным при анализе работы любого простого механизма.

Так, например, благодаря этому правилу сразу можно сказать, что рабочему, изображенному на рисунке, при двукратном выигрыше в силе подъема груза на $10$ см придется опустить противоположный конец рычага на $20$ см.

Столкновение тел. Упругий и неупругий удары

Законы сохранения импульса и механической энергии применяются для решения задачи о движении тел после столкновения: по известным импульсам и энергиям до столкновения определяются значения этих величин после столкновения. Рассмотрим случаи упругого и неупругого ударов.

Абсолютно неупругим называется удар, после которого тела образуют единое тело, движущееся с определенной скоростью. Задача о скорости последнего решается с помощью закона сохранения импульса системы тел с массами $m_1$ и $m_2$ (если речь идет о двух телах) до и после удара:

$m_1{υ_1}↖{→}+m_2{υ_2}↖{→}=(m_1+m_2)υ↖{→}$

Очевидно, что кинетическая энергия тел при неупругом ударе не сохраняется (например, при ${υ_1}↖{→}=-{υ_2}↖{→}$ и $m_1=m_2$ она становится равной нулю после удара).

Абсолютно упругим называется удар, при котором сохраняется не только сумма импульсов, но и сумма кинетических энергий ударяющихся тел.

Для абсолютно упругого удара справедливы уравнения

$m_1{υ_1}↖{→}+m_2{υ_2}↖{→}=m_1{υ"_1}↖{→}+m_2{υ"_2}↖{→};$

${m_{1}υ_1^2}/{2}+{m_{2}υ_2^2}/{2}={m_1(υ"_1)^2}/{2}+{m_2(υ"_2)^2}/{2}$

где $m_1, m_2$ — массы шаров, $υ_1, υ_2$ —скорости шаров до удара, $υ"_1, υ"_2$ —скорости шаров после удара.

Задачи с движущимися телами в физике, когда скорость много меньше световой, решаются с помощью законов ньютоновской, или классической механики. В ней одним из важных понятий является импульс. Основные в физике приводятся в данной статье.

Импульс или количество движения?

Прежде чем приводить формулы импульса тела в физике, познакомимся с этим понятием. Впервые величину под названием impeto (импульс) использовал в описании своих трудов Галилей в начале XVII века. Впоследствии Исаак Ньютон для нее употребил другое название - motus (движение). Поскольку фигура Ньютона оказала большее влияние на развитие классической физики, чем личность Галилея, изначально принято говорить не об импульсе тела, а о количестве движения.

Под количеством движения понимают произведение скорости перемещения тела на инерционный коэффициент, то есть на массу. Соответствующая формула имеет вид:

Здесь p¯ - вектор, направление которого совпадает с v¯, но модуль в m раз больше, чем модуль v¯.

Изменение величины p¯

Понятие о количестве движения в настоящее время используют реже, чем об импульсе. И связан этот факт непосредственно с законами ньютоновской механики. Запишем его в форме, которая приводится в школьных учебниках по физике:

Заменим ускорение a¯ на соответствующее выражение с производной скорости, получим:

Перенося dt из знаменателя правой части равенства в числитель левой, получаем:

Мы получили интересный результат: помимо того, что действующая сила F¯ приводит к ускорению тела (см. первую формулу этого пункта), она также изменяет количество его движения. Произведение силы на время, которое стоит в левой части, называется импульсом силы. Он оказывается равным изменению величины p¯. Поэтому последнее выражение называют также формулой импульса в физике.

Заметим, что dp¯ - это тоже но направлена она в отличие от p¯ не как скорость v¯, а как сила F¯.

Ярким примером изменения вектора количества движения (импульса) является ситуация, когда футболист бьет по мячу. До удара мяч двигался к футболисту, после удара - от него.

Закон сохранения импульса

Формулы в физике, которые описывают сохранение величины p¯, могут быть приведены в нескольких вариантах. Прежде чем их записывать, ответим на вопрос о том, когда сохраняется импульс.

Обратимся к выражению из предыдущего пункта:

Оно говорит о том, что если сумма внешних сил, оказывающих воздействие на систему, равна нулю (закрытая система, F¯= 0), тогда dp¯= 0, то есть никакого изменения количества движения не будет происходить:

Это выражение является общим для импульса тела и закона сохранения импульса в физике. Отметим два важных момента, о которых следует знать, чтобы с успехом применять это выражение на практике:

  • Импульс сохраняется вдоль каждой координаты, то есть если до некоторого события значение p x системы составляло 2 кг*м/c, то после этого события оно будет таким же.
  • Импульс сохраняется независимо от характера столкновений твердых тел в системе. Известно два идеальных случая таких столкновений: абсолютно упругий и абсолютно пластичный удары. В первом случае сохраняется также кинетическая энергия, во втором часть ее расходуется на пластическую деформацию тел, однако импульс сохраняется все равно.

Упругое и неупругое взаимодействие двух тел

Частным случаем использования формулы импульса в физике и его сохранения является движение двух тел, которые сталкиваются друг с другом. Рассмотрим два принципиально разных случая, о которых упоминалось в пункте выше.

Если удар будет абсолютно упругим, то есть передача импульса от одного тела к другому осуществляется посредством упругой деформации, тогда формула сохранения p запишется так:

m 1 *v 1 + m 2 *v 2 = m 1 *u 1 + m 2 *u 2

Здесь важно помнить, что знак скорости должен подставляться с учетом ее направления вдоль рассматриваемой оси (противоположные скорости имеют разные знаки). Эта формула показывает, что при условии известного начального состояния системы (величины m 1 , v 1 , m 2 , v 2) в конечном состоянии (после столкновения) имеется две неизвестных (u 1 , u 2). Найти их можно, если воспользоваться соответствующим законом сохранения кинетической энергии:

m 1 *v 1 2 + m 2 *v 2 2 = m 1 *u 1 2 + m 2 *u 2 2

Если удар абсолютно неупругий или пластический, то после столкновения два тела начинают двигаться как единое целое. В этом случае имеет место выражение:

m 1 *v 1 + m 2 *v 2 = (m 1 + m 2)*u

Как видно, речь идет всего об одной неизвестной (u), поэтому для ее определения достаточно этого одного равенства.

Импульс тела во время движения по окружности

Все, что было сказано выше об импульсе, относится к линейным перемещениям тел. Как быть в случае вращения объектов вокруг оси? Для этого в физике введено другое понятие, которое аналогично линейному импульсу. Оно называется моментом импульса. Формула в физике для него принимает следующий вид:

Здесь r¯ - вектор, равный расстоянию от оси вращения до частицы с импульсом p¯, совершающей круговые движения вокруг этой оси. Величина L¯ - это тоже вектор, но рассчитать его несколько сложнее, чем p¯, поскольку речь идет о векторном произведении.

Закон сохранения L¯

Формула для L¯, которая приведена выше, является определением этой величины. На практике же предпочитают использовать несколько иное выражение. Не будем вдаваться в подробности его получения (это несложно, и каждый может проделать это самостоятельно), а приведем его сразу:

Здесь I - это момент инерции (для материальной точки он равен m*r 2), который описывает инерционные свойства вращающегося объекта, ω¯ - скорость угловая. Как можно заметить, это уравнение аналогично по форме записи такового для линейного импульса p¯.

Если на вращающую систему не действуют никакие внешние силы (в действительности момент сил), то произведение I на ω¯ будет сохраняться независимо от процессов, происходящих внутри системы. То есть закон сохранения для L¯ имеет вид:

Примером его проявления является выступление спортсменов в фигурном катании, когда они совершают вращения на льду.

Импульс... Понятие, довольно часто используемое в физике. Что понимают под этим термином? Если задать этот вопрос простому обывателю, в большинстве случаев мы получим ответ, что импульс тела - это определенное воздействие (толчок или удар), оказываемое на тело, благодаря чему оно получает возможность двигаться в заданном направлении. В целом довольно верное объяснение.

Импульс тела - определение, с которым мы впервые сталкиваемся в школе: на уроке физики нам показывали, как по наклонной поверхности скатывалась небольшая тележка и сталкивала со стола металлический шарик. Именно тогда мы рассуждали, что может оказать влияние на силу и длительность этого Из подобных наблюдений и умозаключений много лет назад и родилось понятие импульса тела как характеристики движения, напрямую зависящей от скорости и массы объекта.

Сам термин в науку ввел француз Рене Декарт. Произошло это в начале XVII века. Ученый объяснял импульс тела не иначе как «количество движения». Как говорил сам Декарт, если одно движущееся тело сталкивается с другим, оно теряет столько своей энергии, сколько отдает другому объекту. Потенциал тела, по мнению физика, никуда не исчезал, а лишь передавался от одного предмета другому.

Основной характеристикой, которой обладает импульс тела, является его направленность. Иначе говоря, он представляет собой Отсюда следует и такое утверждение, что всякое тело, находящееся в движении, обладает определенным импульсом.

Формула воздействия одного объекта на другой: p = mv, где v - скорость тела (векторная величина), m - масса тела.

Однако импульс тела - не единственная величина, определяющая движение. Почему одни тела, в отличие от других, не теряют его продолжительное время?

Ответом на этот вопрос стало появление еще одного понятия - импульса силы, который определяет величину и продолжительность воздействия на предмет. Именно он позволяет нам определять, как изменяется импульс тела за определенный промежуток времени. Импульс силы представляет собой произведение величины воздействия (собственно силы) на продолжительность его приложения (время).

Одним из наиболее примечательных особенностей ИТ является его сохранение в неизменном виде при условии замкнутой системы. Иначе говоря, при отсутствии иных воздействий на два предмета, импульс тела между ними будет оставаться стабильным сколько угодно долго. Принцип сохранения можно учитывать и в ситуации, когда внешнее воздействие на объект присутствует, но его векторное воздействие равно 0. Также импульс не изменится и в том случае, когда воздействие этих сил незначительно или действует на тело весьма непродолжительный период времени (как, например, при выстреле).

Именно этот закон сохранения не одну сотню лет не дает покоя изобретателям, ломающим голову над созданием пресловутого «вечного двигателя», так как именно он лежит в основе такого понятия, как

Что касается применения знаний о таком явлении, как импульс тела, то их используют при разработке ракет, вооружения и новых, пусть и не вечных, механизмов.