Как появляется черная дыра. Черная дыра: что внутри? Интересные факты и исследования

Дата публикации: 27.09.2012

Большинство людей смутно или неправильно представляют себе, что такое чёрные дыры. Между тем, это настолько глобальные и мощные объекты Вселенной, по сравнению с которыми наша Планета и вся наша жизнь - ничто.

Сущность

Это космический объект, обладающий настолько огромной гравитацией, что поглощает всё, что попадёт в его пределы. По сути, чёрная дыра - это объект, который не выпускает даже свет и искривляет пространство-время. Даже время возле чёрных дыр течёт медленнее.

На самом деле, существование чёрных дыр - это только теория (и немного практики). У учёных есть предположения и практические наработки, но плотно изучить чёрные дыры пока не удалось. А потому чёрными дырами называют условно все объекты, подходящие под данное описание. Чёрные дыры мало изучены, а потому очень много вопросов остаются нерешёнными.

У любой чёрной дыры есть горизонт событий - та граница, после которой ничто уже не сможет выбраться. Более того, чем ближе объект находится к чёрной дыре, тем он медленнее движется.

Образование

Существует несколько видов и способов образования чёрных дыр:
- образование чёрных дыр в результате образования Вселенной. Такие чёрные дыры появились сразу после Большого Взрыва.
- умирающие звёзды. Когда звезда теряет свою энергию и термоядерные реакции прекращаются - звезда начинает сжиматься. В зависимости от степени сжатия, выделяют нейтронные звёзды, белые карлики и, собственно, чёрные дыры.
- получение с помощью эксперимента. Например, в коллайдере можно создать квантовую чёрную дыру.

Версии

Многие учёные склонны к мнению, что чёрные дыры всю поглощённую материю выбрасывают в другом месте. Т.е. должны существовать «белые дыры», которые действуют по иному принципу. Если в чёрную дыру можно попасть, но нельзя выбраться, то в белую дыру, наоборот, не попасть. Главный аргумент учёных - это зафиксированные в космосе резкие и мощные выплески энергии.

Сторонники теории струн вообще создали свою модель чёрной дыры, которая не уничтожает информацию. Их теория называется «Fuzzball» - она позволяет ответить на вопросы, связанные с сингулярностью и исчезновением информации.

Что такое сингулярность и исчезновение информации? Сингулярность - это такая точка в пространстве, характеризующаяся бесконечным давлением и плотностью. Многих смущает факт сингулярности, ведь физики не могут работать с бесконечными числами. Многие уверены, что сингулярность в чёрной дыре есть, но её свойства описываются весьма поверхностно.

Если говорить простым языком, то все проблемы и недопонимание выходит из соотношения квантовой механики и гравитации. Пока учёные не могут создать теорию, объединяющую их. А потому и возникают проблемы с чёрной дырой. Ведь чёрная дыра вроде как уничтожает информацию, но при этом нарушаются основы квантовой механики. Хотя совсем недавно С.Хокинг, вроде бы, решил данный вопрос, заявив что информация в чёрных дырах всё-таки не уничтожается.

Стереотипы

Во-первых, чёрные дыры не могут существовать бесконечно долго. А всё благодаря испарению Хокинга. А потому не нужно думать, что чёрные дыры рано или поздно поглотят Вселенную.

Во-вторых, наше Солнце не станет чёрной дырой. Так как массы нашей звезды будет недостаточно. Наше солнце скорее превратится в белого карлика (и то не факт).

В-третьих, Большой Адронный Коллайдер не уничтожит нашу Землю, создав чёрную дыру. Даже если они специально создадут чёрную дыру и «выпустят» её, то из-за её малых размеров, она будет поглощать нашу планету очень и очень долго.

В-четвёртых, не нужно думать, что чёрная дыра - это «дыра» в космосе. Чёрная дыра - это сферический объект. Отсюда большинство мнений, что чёрные дыры ведут в параллельную Вселенную. Однако этот факт пока ещё не удалось доказать.

В-пятых, чёрная дыра не имеет цвета. Её обнаруживают либо по рентгеновскому излучению, либо на фоне других галактик и звёзд (эффект линзы).

Из-за того, что люди часто путают чёрные дыры с червоточинами (которые на самом деле существуют), то среди обычных людей данные понятия не различаются. Червоточина и вправду позволяет перемещаться в пространстве и времени, но пока только в теории.

Сложные вещи простым языком

Сложно описывать такой феномен как чёрная дыра простым языком. Если вы считаете себя технарём, разбирающимся в точных науках, то советую почитать труды учёных непосредственно. Если же вы хотите узнать об этом феномене больше, то почитайте труды Стивена Хокинга. Он многое сделал для науки, и особенно в сфере чёрных дыр. Именно в честь него названо испарение чёрных дыр. Он является сторонником педагогического подхода, а потому все его труды будут понятны даже обычному человек.

Книги:
- «Чёрные дыры и молодые Вселенные» 1993 года.
- «Мир в ореховой скорлупке 2001» года.
- «Кратчайшая история Вселенной 2005» года.

Особенно хочу порекомендовать его научно-популярные фильмы, которые расскажут вам понятным языком не только о чёрных дырах, но и о Вселенной вообще:
- «Вселенная Стивена Хокинга» - сериал из 6 эпизодов.
- «Вглубь Вселенной со Стивеном Хокингом» - сериал из 3 эпизодов.
Все эти фильмы переведены на русский язык, их часто показываются на каналах Discovery.

Спасибо за внимание!


Последние советы раздела «Наука & Техника»:

Вам помог этот совет? Вы можете помочь проекту, пожертвовав на его развитие любую сумму по своему усмотрению. Например, 20 рублей. Или больше:)

Черная дыра является особенной областью в пространстве. Это некое скопление черной материи, способное втягивать в себя и поглощать другие объекты космоса. Явление черных дыр до сих пор не . Все имеющиеся данные - всего лишь теории и предположения ученых астрономов.

Название "черная дыра" ввел в употребление ученый ДЖ.А. Уилер в 1968 году в Принстонском университете.

Существует теория, что черные дыры в являются звездами, но необычными, наподобие нейтронных. Черная дыра - - , потому что имеет очень большую плотность свечения и не посылает абсолютно никакого излучения. Поэтому она невидима ни в инфракрасных, ни в рентгеновских, ни в радиолучах.

Эту ситуацию французский астроном П. Лаплас еще за 150 лет до черных дыр . Согласно его доводам, если имеет плотность, равную плотности Земли, и диаметр, превышающий диаметр Солнца в 250 раз, то она не дает лучам света распространяться по Вселенной в силу своего тяготения, поэтому и остается невидимой. Таким образом предполагается, что черные дыры являются самыми мощными излучающими объектами во Вселенной, но при этом они не имеют твердой поверхности.

Свойства черных дыр

Все предполагаемые свойства черных дыр основаны на теории относительности, выведенной в 20 веке А.Эйнштейном. Любой традиционный подход к изучению этого явления не дает никакого убедительного объяснения явлению черных дыр.

Главное свойство черной дыры - способность искривлять время и пространство. Любой движущийся объект, попавший в ее гравитационное поле, неизбежно будет втянут внутрь, т.к. при этом вокруг объекта возникает плотный гравитационный вихрь, некая воронка. При этом трансформируется и понятие времени. Ученые расчетным путем все же склоняются к выводу, что черные дыры - это не небесные тела в общепринятом понимании. Это действительно некие дыры, червоточины во времени и пространстве, способные изменять и уплотнять его.

Черная дыра - замкнутая область пространства, в которую сжато вещество и откуда ничто не может выйти, даже свет.

Согласно расчетам астрономов, при том мощном гравитационном поле, которое существует внутри черных дыр, ни один объект не сможет остаться невредимым. Его мгновенно разорвет на миллиарды кусочков еще до того, как он попадет внутрь. Однако при этом не исключается возможность обмена частицами и информацией с их помощью. А если черная дыра имеет массу, как минимум в миллиард раз превышающую массу Солнца (сверхмассивная), то теоретически возможно и передвижение объектов сквозь нее без быть разорванными гравитацией.

Конечно, это только теории, ведь исследования ученых еще слишком далеки от понимания того, какие процессы и возможности скрывают черные дыры. Вполне возможно, в будущем нечто подобное может осуществиться.



ЧЕРНАЯ ДЫРА
область в пространстве, возникшая в результате полного гравитационного коллапса вещества, в которой гравитационное притяжение так велико, что ни вещество, ни свет, ни другие носители информации не могут ее покинуть. Поэтому внутренняя часть черной дыры причинно не связана с остальной Вселенной; происходящие внутри черной дыры физические процессы не могут влиять на процессы вне ее. Черная дыра окружена поверхностью со свойством однонаправленной мембраны: вещество и излучение свободно падает сквозь нее в черную дыру, но оттуда ничто не может выйти. Эту поверхность называют "горизонтом событий". Поскольку до сих пор имеются лишь косвенные указания на существование черных дыр на расстояниях в тысячи световых лет от Земли, наше дальнейшее изложение основывается главным образом на теоретических результатах. Черные дыры, предсказанные общей теорией относительности (теорией гравитации, предложенной Эйнштейном в 1915) и другими, более современными теориями тяготения, были математически обоснованы Р.Оппенгеймером и Х. Снайдером в 1939. Но свойства пространства и времени в окрестности этих объектов оказались столь необычными, что астрономы и физики в течение 25 лет не относились к ним серьезно. Однако астрономические открытия в середине 1960-х годов заставили взглянуть на черные дыры как на возможную физическую реальность. Их открытие и изучение может принципиально изменить наши представления о пространстве и времени.
Образование черных дыр. Пока в недрах звезды происходят термоядерные реакции, они поддерживают высокую температуру и давление, препятствуя сжатию звезды под действием собственной гравитации. Однако со временем ядерное топливо истощается, и звезда начинает сжиматься. Расчеты показывают, что если масса звезды не превосходит трех масс Солнца, то она выиграет "битву с гравитацией": ее гравитационный коллапс будет остановлен давлением "вырожденного" вещества, и звезда навсегда превратится в белый карлик или нейтронную звезду. Но если масса звезды более трех солнечных, то уже ничто не сможет остановить ее катастрофического коллапса и она быстро уйдет под горизонт событий, став черной дырой. У сферической черной дыры массы M горизонт событий образует сферу с окружностью по экватору в 2p раз большей "гравитационного радиуса" черной дыры RG = 2GM/c2, где c - скорость света, а G - постоянная тяготения. Черная дыра с массой 3 солнечных имеет гравитационный радиус 8,8 км.

Если астроном будет наблюдать звезду в момент ее превращения в черную дыру, то сначала он увидит, как звезда все быстрее и быстрее сжимается, но по мере приближения ее поверхности к гравитационному радиусу сжатие начнет замедляться, пока не остановится совсем. При этом приходящий от звезды свет будет слабеть и краснеть, пока не потухнет совсем. Это происходит потому, что в борьбе с гигантской силой тяжести свет теряет энергию и ему требуется все больше времени, чтобы достичь наблюдателя. Когда поверхность звезды достигнет гравитационного радиуса, покинувшему ее свету потребуется бесконечное время, чтобы достичь наблюдателя (и при этом фотоны полностью потеряют свою энергию). Следовательно, астроном никогда не дождется этого момента и тем более не увидит того, что происходит со звездой под горизонтом событий. Но теоретически этот процесс исследовать можно. Расчет идеализированного сферического коллапса показывает, что за короткое время звезда сжимается в точку, где достигаются бесконечно большие значения плотности и тяготения. Такую точку называют "сингулярностью". Более того, общий математический анализ показывает, что если возник горизонт событий, то даже несферический коллапс приводит к сингулярности. Однако все это верно лишь в том случае, если общая теория относительности применима вплоть до очень маленьких пространственных масштабов, в чем мы пока не уверены. В микромире действуют квантовые законы, а квантовая теория гравитации пока не создана. Ясно, что квантовые эффекты не могут остановить сжатие звезды в черную дыру, а вот предотвратить появление сингулярности они могли бы. Современная теория звездной эволюции и наши знания о звездном населении Галактики указывают, что среди 100 млрд. ее звезд должно быть порядка 100 млн. черных дыр, образовавшихся при коллапсе самых массивных звезд. К тому же черные дыры очень большой массы могут находиться в ядрах крупных галактик, в том числе и нашей. Как уже отмечалось, в нашу эпоху черной дырой может стать лишь масса, более чем втрое превышающая солнечную. Однако сразу после Большого взрыва, с которого ок. 15 млрд. лет назад началось расширение Вселенной, могли рождаться черные дыры любой массы. Самые маленькие из них в силу квантовых эффектов должны были испариться, потеряв свою массу в виде излучения и потоков частиц. Но "первичные черные дыры" с массой более 1015 г могли сохраниться до наших дней. Все расчеты коллапса звезд делаются в предположении слабого отклонения от сферической симметрии и показывают, что горизонт событий формируется всегда. Однако при сильном отклонении от сферической симметрии коллапс звезды может привести к образованию области с бесконечно сильной гравитацией, но не окруженной горизонтом событий; ее называют "голой сингулярностью". Это уже не черная дыра в том смысле, как мы обсуждали выше. Физические законы вблизи голой сингулярности могут иметь весьма неожиданный вид. В настоящее время голая сингулярность рассматривается как маловероятный объект, тогда как в существование черных дыр верит большинство астрофизиков.
Свойства черных дыр. Для стороннего наблюдателя структура черной дыры выглядит чрезвычайно простой. В процессе коллапса звезды в черную дыру за малую долю секунды (по часам удаленного наблюдателя) все ее внешние особенности, связанные с неоднородностью исходной звезды, излучаются в виде гравитационных и электромагнитных волн. Образовавшаяся стационарная черная дыра "забывает" всю информацию об исходной звезде, кроме трех величин: полной массы, момента импульса (связанного с вращением) и электрического заряда. Изучая черную дыру, уже невозможно узнать, состояла ли исходная звезда из вещества или антивещества, имела ли она форму сигары или блина и т.п. В реальных астрофизических условиях заряженная черная дыра будет притягивать к себе из межзвездной среды частицы противоположного знака, и ее заряд быстро станет нулевым. Оставшийся стационарный объект либо будет невращающейся "шварцшильдовой черной дырой", которая характеризуется только массой, либо вращающейся "керровской черной дырой", которая характеризуется массой и моментом импульса. Единственность указанных выше типов стационарных черных дыр была доказана в рамках общей теории относительности В. Израэлем, Б. Картером, С. Хокингом и Д. Робинсоном. Согласно общей теории относительности, пространство и время искривляются гравитационным полем массивных тел, причем наибольшее искривление происходит вблизи черных дыр. Когда физики говорят об интервалах времени и пространства, они имеют в виду числа, считанные с каких-либо физических часов и линеек. Например, роль часов может играть молекула с определенной частотой колебаний, количество которых между двумя событиями можно назвать "интервалом времени". Замечательно, что гравитация действует на все физические системы одинаково: все часы показывают, что время замедляется, а все линейки - что пространство растягивается вблизи черной дыры. Это означает, что черная дыра искривляет вокруг себя геометрию пространства и времени. Вдали от черной дыры это искривление мало, а вблизи так велико, что лучи света могут двигаться вокруг нее по окружности. Вдали от черной дыры ее поле тяготения в точности описывается теорией Ньютона для тела такой же массы, но вблизи гравитация становится значительно сильнее, чем предсказывает ньютонова теория. Любое тело, падающее на черную дыру, задолго до пересечения горизонта событий будет разорвано на части мощными приливными гравитационными силами, возникающими из-за разницы притяжения на разных расстояниях от центра. Черная дыра всегда готова поглотить вещество или излучение, увеличив этим свою массу. Ее взаимодействие с окружающим миром определяется простым принципом Хокинга: площадь горизонта событий черной дыры никогда не уменьшается, если не учитывать квантового рождения частиц. Дж. Бекенстейн в 1973 предположил, что черные дыры подчиняются тем же физическим законам, что и физические тела, испускающие и поглощающие излучение (модель "абсолютно черного тела"). Под влиянием этой идеи Хокинг в 1974 показал, что черные дыры могут испускать вещество и излучение, но заметно это будет лишь в том случае, если масса самой черной дыры относительно невелика. Такие черные дыры могли рождаться сразу после Большого взрыва, с которого началось расширение Вселенной. Массы этих первичных черных дыр должны быть не более 1015 г (как у небольшого астероида), а размер 10-15 м (как у протона или нейтрона). Мощное гравитационное поле вблизи черной дыры рождает пары частица-античастица; одна из частиц каждой пары поглощается дырой, а вторая испускается наружу. Черная дыра с массой 1015 г должно вести себя как тело с температурой 1011 К. Идея об "испарении" черных дыр полностью противоречит классическому представлению о них как о телах, не способных излучать.
Поиск черных дыр. Расчеты в рамках общей теории относительности Эйнштейна указывают лишь на возможность существования черных дыр, но отнюдь не доказывают их наличия в реальном мире; открытие настоящей черной дыры стало бы важным шагом в развитии физики. Поиск изолированных черных дыр в космосе безнадежно труден: мы не сможем заметить маленький темный объект на фоне космической черноты. Но есть надежда обнаружить черную дыру по ее взаимодействию с окружающими астрономическими телами, по ее характерному влиянию на них. Сверхмассивные черные дыры могут находиться в центрах галактик, непрерывно пожирая там звезды. Сконцентрировавшись вокруг черной дыры, звезды должны образовать центральные пики яркости в ядрах галактик; их поиски сейчас активно ведутся. Другой метод поиска состоит в измерении скорости движения звезд и газа вокруг центрального объекта в галактике. Если известно их расстояние от центрального объекта, то можно вычислить его массу и среднюю плотность. Если она существенно превосходит плотность, возможную для звездных скоплений, то полагают, что это черная дыра. Этим способом в 1996 Дж.Моран с коллегами определили, что в центре галактики NGC 4258, вероятно, находится черная дыра с массой 40 млн. солнечных. Наиболее перспективным является поиск черной дыры в двойных системах, где она в паре с нормальной звездой может обращаться вокруг общего центра масс. По периодическому доплеровскому смещению линий в спектре звезды можно понять, что она обращается в паре с неким телом и даже оценить массу последнего. Если эта масса превышает 3 массы Солнца, а заметить излучение самого тела не удается, то очень возможно, что это черная дыра. В компактной двойной системе черная дыра может захватывать газ с поверхности нормальной звезды. Двигаясь по орбите вокруг черной дыры, этот газ образует диск и, приближаясь по спирали к черной дыре, сильно нагревается и становится источником мощного рентгеновского излучения. Быстрые флуктуации этого излучения должны указывать, что газ стремительно движется по орбите небольшого радиуса вокруг крохотного массивного объекта. С 1970-х годов обнаружено несколько рентгеновских источников в двойных системах с явными признаками присутствия черных дыр. Самой перспективной считается рентгеновская двойная V 404 Лебедя, масса невидимого компонента которой оценивается не менее чем в 6 масс Солнца. Другие замечательные кандидаты в черные дыры находятся в двойных рентгеновских системах Лебедь X-1, LMCX-3, V 616 Единорога, QZ Лисички, а также в рентгеновских новых Змееносец 1977, Муха 1981 и Скорпион 1994. За исключением LMCX-3, расположенной в Большом Магеллановом Облаке, все они находятся в нашей Галактике на расстояниях порядка 8000 св. лет от Земли.
См. также
КОСМОЛОГИЯ ;
ТЯГОТЕНИЕ ;
ГРАВИТАЦИОННЫЙ КОЛЛАПС ;
ОТНОСИТЕЛЬНОСТЬ ;
ВНЕАТМОСФЕРНАЯ АСТРОНОМИЯ .
ЛИТЕРАТУРА
Черепащук А.М. Массы черных дыр в двойных системах. Успехи физических наук, т. 166, с. 809, 1996

Энциклопедия Кольера. - Открытое общество . 2000 .

Синонимы :

Смотреть что такое "ЧЕРНАЯ ДЫРА" в других словарях:

    ЧЕРНАЯ ДЫРА, локализованный участок космического пространства, из которого не может вырваться ни вещество, ни излучение, иными словами, первая космическая скорость превосходит скорость света. Граница этого участка называется горизонтом событий.… … Научно-технический энциклопедический словарь

    Космич. объект, возникающий в результате сжатия тела гравитац. силами до размеров, меньших его гравитационного радиуса rg=2g/c2 (где М масса тела, G гравитац. постоянная, с численное значение скорости света). Предсказание о существовании во… … Физическая энциклопедия

    Сущ., кол во синонимов: 2 звезда (503) неизвестность (11) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

«Научная фантастика может быть полезной - она стимулирует воображение и избавляет от страха перед будущим. Однако научные факты могут оказаться намного поразительнее. Научная фантастика даже не предполагала наличия таких вещей, как черные дыры »
Стивен Хокинг

В глубинах вселенной для человека таится бесчисленное множество загадок и тайн. Одной из них являются черные дыры – объекты, которые не могут понять даже величайшие умы человечества. Сотни астрофизиков пытаются раскрыть природу черных дыр, однако на данном этапе мы еще даже не доказали их существование на практике.

Кинорежиссеры посвящают им свои фильмы, а среди простых людей черные дыры стали настолько культовым явлением, что их отождествляют с концом света и неминуемой гибелью. Их боятся и ненавидят, но при этом боготворят их и преклоняются перед неизвестностью, которую таят в себе эти странные осколки Вселенной. Согласитесь, быть поглощенным черной дырой – та еще романтика. С их помощью можно , а также они могут стать для нас проводниками в .

На популярности черных дыр часто спекулирует желтая пресса. Найти заголовки в газетах, связанные с концом света на планете из-за очередного столкновения со сверхмассивной черной дырой, не проблема. Гораздо хуже то, что малограмотная часть населения все воспринимает это всерьез и поднимает настоящую панику. Чтобы внести толику ясности, мы отправимся в путешествие к истокам открытия черных дыр и попытаемся понять, что же это такое и как к этому относиться.

Невидимые звезды

Так уж сложилось, что современные физики описывают устройство нашей Вселенной с помощью теории относительности, которую человечеству в начале 20 века заботливо предоставил Эйнштейн. Тем более загадочными становятся черные дыры, на горизонте событий которых прекращают действовать все известные нам законы физики и эйнштейновская теория в том числе. Это ли не прекрасно? К тому же, догадку о существовании черных дыр высказали задолго до рождения самого Эйнштейна.

В 1783 году в Англии наблюдался значительный рост научной активности. В те времена наука шла бок о бок с религией, они неплохо уживались вместе, а ученых уже не считали еретиками. Более того, научными изысканиями занимались священники. Одним из таких служителей Бога был английский пастор Джон Мичелл, который задавался не только вопросами бытия, но и вполне научными задачами. Мичелл был весьма титулованным ученым: изначально он был преподавателем математики и древнего языкознания в одном из колледжей, а после этого за ряд открытий был принят в Лондонское королевское общество.

Джон Мичелл занимался вопросами сейсмологии, но на досуге любил поразмыслить о вечном и космосе. Так у него родилась идея о том, что где-то в глубинах Вселенной могут существовать сверхмассивные тела с такой мощной гравитацией, что для преодоления силы тяготения такого тела необходимо двигаться со скоростью равной или выше скорости света. Если принять такую теорию за истину, то развить вторую космическую скорость (скорость, необходимая для преодоления гравитационного притяжения покидаемого тела) не сможет даже свет, поэтому такое тело останется невидимым для невооруженного глаза.

Свою новую теорию Мичелл обозвал «темными звездами», а заодно попытался вычислить массу таких объектов. Свои мысли по этому поводу он высказал в открытом письме Лондонскому королевскому обществу. К сожалению, в те времена такие изыскания не представляли особой ценности для науки, поэтому письмо Мичелла отправили в архив. Лишь спустя две сотни лет во второй половине 20 века удалось обнаружить его среди тысяч других записей, бережно хранящихся в древней библиотеке.

Первые научные обоснования существования черных дыр

После выхода Общей теории относительности Эйнштейна в свет, математики и физики всерьез взялись за решение представленных немецким ученым уравнений, которые должны были рассказать нам много нового об устройстве Вселенной. Тем же решил заняться и немецкий астроном, физик Карл Шварцшильд в 1916 году.

Ученый с помощью своих вычислений пришел к выводу, что существование черных дыр возможно. Также он первым описал то, что впоследствии назвали романтической фразой «горизонт событий» — воображаемую границу пространства-времени у черной дыры, после пересечения которой наступает точка невозврата. Из-за горизонта событий не вырвется ничто, даже свет. Именно за горизонтом событий наступает так называемая «сингулярность», где известные нам законы физики перестают действовать.

Продолжая развивать свою теорию и решая уравнения, Шварцшильд открывал для себя и мира новые тайны черных дыр. Так, он смог исключительно на бумаге вычислить расстояние от центра черной дыры, где сконцентрирована ее масса, до горизонта событий. Данное расстояние Шварцшильд назвал гравитационным радиусом.

Несмотря на то, что математически решения Шварцшильда были исключительно верны и не могли быть опровергнуты, научное сообщество начала 20 века не могло сразу принять столь шокирующее открытие, и существование черных дыр было списано на уровень фантастики, которая то и дело проявлялась в теории относительности. На ближайшие полтора десятка лет исследование космоса на предмет наличия черных дыр было медленным, и занимались им единичные приверженцы теории немецкого физика.

Звезды, рождающие тьму

После того, как уравнения Эйнштейна были разобраны по полочкам, настало время с помощью сделанных выводов разбираться в устройстве Вселенной. В частности, в теории эволюции звезд. Ни для кого не секрет, что в нашем мире ничто не вечно. Даже звезды имеют свой цикл жизни, пусть и более долгий, нежели человек.

Одним из первых ученых, которые всерьез заинтересовались звездной эволюцией, стал молодой астрофизик Субраманьян Чандрасекар – уроженец Индии. В 1930 году он выпустил научную работу, в которой описывалось предполагаемое внутреннее строение звезд, а также циклы их жизни.

Уже в начале 20 века ученые догадывались о таком явлении, как гравитационное сжатие (гравитационный коллапс). В определенный момент своей жизни звезда начинает сжиматься с огромной скоростью под действием гравитационных сил. Как правило, это происходит в момент смерти звезды, однако при гравитационном коллапсе есть несколько путей дальнейшего существования раскаленного шара.

Научный руководитель Чандрасекара Ральф Фаулер – уважаемый в свое время физик-теоретик – предполагал, что во время гравитационного коллапса любая звезда превращается в более мелкую и горячую – белого карлика. Но вышло так, что ученик «сломал» теорию учителя, которую разделяло большинство физиков начала прошлого века. Согласно работе молодого индуса, кончина звезды зависит от ее изначальной массы. Например, белыми карликами могут становиться только те звезды, чья масса не превышала 1.44 от массы Солнца. Это число было названо пределом Чандрасекара. Если же масса звезды превышала этот предел, то она умирает совсем иначе. При определенных условиях, такая звезда в момент смерти может возродиться в новую, нейтронную звезду – еще одну загадку современной Вселенной. Теория относительности же подсказывает нам еще один вариант – сжатие звезды до сверхмалых величин, и вот здесь начинается самое интересное.

В 1932 году в одном из научных журналов появляется статья, в которой гениальный физик из СССР Лев Ландау предположил, что при коллапсе сверхмассивная звезда сжимается в точку с бесконечно малым радиусом и бесконечной массой. Несмотря на то, что такое событие весьма сложно представить с точки зрения неподготовленного человека, Ландау был недалек от истины. Также физик предположил, что согласно теории относительности, гравитация в такой точке будет столь велика, что начнет искажать пространство-время.

Теория Ландау понравилась астрофизикам, и они продолжили ее развивать. В 1939 году в Америке благодаря усилиям двух физиков – Роберта Оппенгеймера и Хартленда Снейдера – появилась теория, подробно описывающая сверхмассивную звезду на момент коллапса. В результате такого события должна была появиться настоящая черная дыра. Несмотря на убедительность доводов, ученые продолжали отрицать возможность существования подобных тел, как и превращение в них звезд. Даже Эйнштейн отстранился от этой идеи, посчитав, что звезда не способна на такие феноменальные превращения. Другие же физики не скупились в высказываниях, называя возможность таких событий нелепыми.
Впрочем, наука всегда достигает истины, стоит лишь немного подождать. Так и получилось.

Самые яркие объекты во Вселенной

Наш мир – совокупность парадоксов. Иногда в нем уживаются вещи, сосуществование которых не поддается никакой логике. Например, термин «черная дыра» не будет ассоциироваться у нормального человека с выражением «невероятно яркий», однако открытие начала 60-х годов прошлого века позволило ученым считать это утверждение неверным.

С помощью телескопов астрофизикам удалось обнаружить неизвестные до того момента объекты на звездном небе, которые вели себя совсем странно несмотря на то, что выглядели, как обычные звезды. Изучая эти странные светила, американский ученый Мартин Шмидт обратил внимание на их спектрографию, данные которой показывали отличные от сканирования других звезд результаты. Проще говоря, эти звезды не были похожи на другие, привычные нам.

Внезапно Шмидта осенило, и он обратил внимание на смещение спектра в красном диапазоне. Оказалось, что эти объекты намного дальше от нас, чем те звезды, что мы привыкли наблюдать в небе. Например, наблюдаемый Шмидтом объект был расположен в двух с половиной миллиардах световых лет от нашей планеты, но светил так же ярко, как и звезда в каких-нибудь сотне световых лет от нас. Получается, свет от одного такого объекта сопоставим с яркостью целой галактики. Такое открытие стало настоящим прорывом в астрофизике. Ученый назвал эти объекты «quasi-stellar» или просто «квазар».

Мартин Шмидт продолжил изучение новых объектов и выяснил, что столь яркое свечение может быть вызвано только по одной причине – аккреции. Аккреция – это процесс поглощения сверхмассивным телом окружающей материи с помощью гравитации. Ученый пришел к выводу, что в центре квазаров находится огромная черная дыра, которая с невероятной силой втягивает в себя окружающую ее в пространстве материю. В процессе поглощения дырой материи, частицы разгоняются до огромных скоростей и начинают светиться. Своеобразный светящийся купол вокруг черной дыры называется аккреационным диском. Его визуализация была хорошо продемонстрирована в киноленте Кристофера Нолана «Интерстеллар», которая породила множество вопросов «как черная дыра может светиться?».

На сегодняшний день ученые нашли на звездном небе уже тысячи квазаров. Эти странные невероятно яркие объекты называют маяками Вселенной. Они позволяют нам чуть лучше представить устройство космоса и ближе подойти к моменту, с которого все началось.

Несмотря на то, что астрофизики уже много лет получали косвенные доказательства существования сверхмассивных невидимых объектов во Вселенной, термина «черная дыра» не существовало вплоть до 1967 года. Чтобы избежать сложных названий, американский физик Джон Арчибальд Уиллер предложил назвать такие объекты «черными дырами». Почему бы и нет? В какой-то мере они черные, ведь мы их не можем увидеть. К тому же они все притягивают, в них можно упасть, прямо как в настоящую дыру. Да и выбраться из такого места согласно современным законам физики просто невозможно. Впрочем, Стивен Хокинг утверждает, что при путешествии сквозь черную дыру можно попасть в другую Вселенную, другой мир, а это уже надежда.

Страх бесконечности

Из-за излишней таинственности и романтизации черных дыр, эти объекты стали настоящей страшилкой среди людей. Желтая пресса любит спекулировать на неграмотности населения, выдавая в тираж изумительные истории о том, как на нашу Землю движется огромная черная дыра, которая в считанные часы поглотит Солнечную систему, или же просто излучает волны токсичного газа в сторону нашей планеты.

Особенно популярна тема уничтожения планеты с помощью Большого Адронного Коллайдера, который был построен в Европе в 2006 году на территории Европейского совета по ядерным исследованиям (CERN). Волна паники начиналась как чья-то глупая шутка, однако нарастала как снежный ком. Кто-то пустил слух, что в ускорителе частиц коллайдера может образоваться черная дыра, которая поглотит нашу планету целиком. Конечно же, возмущенный народ начал требовать запретить эксперименты в БАК, испугавшись такого исхода событий. В Европейский суд начали поступать иски с требованием закрыть коллайдер, а ученых, создавших его, наказать по всей строгости закона.

На самом деле физики не отрицают, что при столкновении частиц в Большом Адронном Коллайдере могут возникать объекты, похожие по свойствам на черные дыры, однако их размер находится на уровне размеров элементарных частиц, а существуют такие «дыры» столь недолго, что нам даже не удается зафиксировать их возникновение.

Одним из главных специалистов, которые пытаются развеять волну невежества перед людьми, является Стивен Хокинг – знаменитый физик-теоретик, который, к тому же, считается настоящим «гуру» относительно черных дыр. Хокинг доказал, что черные дыры не всегда поглощают свет, который появляется в аккреационных дисках, и его часть рассеивается в пространство. Такое явление было названо излучением Хокинга, или испарением черной дыры. Также Хокинг установил зависимость между размером черной дыры и скоростью ее «испарения» — чем она меньше, тем меньше существует во времени. А это значит, что всем противникам Большого Адронного Коллайдера не стоит переживать: черные дыры в нем не смогут просуществовать и миллионной доли секунды.

Теория, не доказанная практикой

К сожалению, технологии человечества на данном этапе развития не позволяют нам проверить большинство теорий, разработанных астрофизиками и другими учеными. С одной стороны, существование черных дыр довольно убедительно доказано на бумаге и выведено с помощью формул, в которых все сошлось с каждой переменной. С другой, на практике нам пока не удалось увидеть воочию настоящую черную дыру.

Несмотря на все разногласия, физики предполагают, что в центре каждой из галактик находится сверхмассивная черная дыра, которая собирает своей гравитацией звезды в скопления и заставляет путешествовать по Вселенной большой и дружной компанией. В нашей галактике Млечный путь по разным оценкам насчитывается от 200 до 400 миллиардов звезд. Все эти звезды вращаются вокруг чего-то, что обладает огромной массой, вокруг чего-то, что мы не можем увидеть в телескоп. С большой долей вероятности это черная дыра. Стоит ли ее бояться? – Нет, по-крайней мере не в ближайшие несколько миллиардов лет, но мы можем снять про нее еще один интересный фильм.

Черные дыры — единственные космические тела, способные притягивать силой гравитации свет. Они же являются самыми большими объектами Вселенной. Мы вряд ли в ближайшее время узнаем, что происходит возле их горизонта событий (известного как «точка невозврата»). Это самые таинственные места нашего мира, о которых, несмотря на десятилетия исследований, до сих пор известно очень мало. В этой статье собраны 10 фактов, которые можно назвать наиболее интригующими.

Черные дыры не втягивают в себя материю

Многие представляют черную дыру своеобразным «космическим пылесосом», втягивающим в себя окружающее пространство. На самом деле, черные дыры — это обычные космические объекты, обладающие исключительно сильным гравитационным полем.

Если бы на месте Солнца возникла черная дыра таких же размеров, Земля не была бы втянута внутрь, она вращалась бы по той же орбите, что и сегодня. Расположенные рядом с черными дырами звезды теряют часть массы в виде звездного ветра (это происходит в процессе существования любой звезды) и черные дыры поглощают только эту материю.

Существования черных дыр было предсказано Карлом Шварцшильдом

Карл Шварцшильд был первым, кто применил общую теорию относительности Эйнштейна, для того, чтобы обосновать существование «точки невозврата». Сам Эйнштейн не задумывался о черных дырах, хотя его теория позволяет предсказать их существование.

Шварцшильд сделал свое предположение в 1915 году, сразу вслед за тем, как Эйнштейн опубликовал общую теорию относительности. Тогда же возник термин «радиус Шварцшильда» - это величина, которая показывает, как сильно вам придется сжать объект, чтобы он стал черной дырой.

Теоретически, черной дырой может стать все, что угодно, при достаточной степени сжатия. Чем плотнее объект, тем более сильное гравитационное поле он создает. Например, Земля стала бы черной дырой, если бы ее массой обладал объект величиной с арахис.

Черные дыры могут порождать новые вселенные


Мысль о том, что черные дыры могут порождать новые вселенные кажется абсурдной (тем более, что мы все еще не уверены в существовании других вселенных). Тем не менее, подобные теории активно разрабатываются учеными.

Очень упрощенная версия одной из этих теорий заключается в следующем. Наш мир обладает исключительно благоприятными условиями для появления в нем жизни. Если бы какие-либо из физических констант изменились хотя бы чуть-чуть, нас бы не было в этом мире. Сингулярность черных дыр отменяет обычные законы физики и может (по крайней мере, в теории) породить новую вселенную, которая будет отличаться от нашей.

Черные дыры могут превратить вас (и все, что угодно) в спагетти


Черные дыры растягивают предметы, которые находятся рядом с ними. Эти предметы начинают напоминать спагетти (есть даже специальный термин - «спагеттификация»).

Это происходит благодаря тому, как работает сила притяжения. В настоящий момент ваши ноги находятся к центру Земли ближе, чем голова, поэтому они притягиваются сильнее. На поверхности черной дыры разница в силе притяжении начинает работать против вас. Ноги притягиваются к центру черной дыры все быстрее, так, что верхняя половина туловища не успевает за ними. Результат: спагеттификация!

Черные дыры испаряются со временем


Черные дыры не только поглощают звездный ветер, но и испаряются. Это явление было открыто в 1974 году и было названо излучением Хокинга (по имени Стивена Хокинга, сделавшего открытие).

Со временем черная дыра может отдать всю свою массу в окружающее пространство вместе с этим излучением и исчезнуть.

Черные дыры замедляют время вблизи себя


По мере приближения к горизонту событий время замедляется. Чтобы понять, почему это происходит, нужно обратиться к «парадоксу близнецов», мысленному эксперименту, часто используемому для иллюстрации основных положений общей теории относительности Эйнштейна.

Один из братьев-близнецов остается на Земле, а второй улетает в космическое путешествие, двигаясь со скоростью света. Вернувшийся на Землю близнец обнаруживает, что его брат постарел больше, чем он, потому что при движении на скорости, близкой к скорости света, время идет медленнее.

Приближаясь к горизонту событий черной дыры, вы будете двигаться с такой высокой скоростью, что время для вас замедлится.

Черные дыры являются самыми совершенными энергетическими установками


Черные дыры генерируют энергию лучше, чем Солнце и другие звезды. Это связано с материей, вращающейся вокруг них. Преодолевая горизонт событий на огромной скорости, материя на орбите черной дыры разогревается до крайне высоких температур. Это называется излучением абсолютно черного тела.

Для сравнения, при ядерном синтезе в энергию превращается 0,7% материи. Вблизи черной дыры энергией становятся 10% материи!

Черные дыры искривляют пространство рядом с собой

Пространство можно представить себе как растянутую резиновую пластинку с нарисованными на ней линиями. Если на пластинку положить какой-нибудь объект, она изменит свою форму. Так же работают и черные дыры. Их экстремальная масса притягивает к себе все, включая свет (лучи которого, продолжая аналогию, можно было бы назвать линиями на пластинке).

Черные дыры ограничивают количество звезд во Вселенной


Звезды возникают из газовых облаков. Для того, чтобы началось формирование звезды, облако должно остыть.

Излучение абсолютно черных тел мешает газовым облакам остывать и предотвращает появление звезд.

Теоретически, любой объект может стать черной дырой


Единственное отличие нашего Солнца от черной дыры — сила гравитации. В центре черной дыры она намного сильнее, чем в центре звезды. Если бы наше Солнце было сжато до примерно пяти километров в диаметре, оно могло бы быть черной дырой.

Теоретически, черной дырой может стать все, что угодно. На практике же мы знаем, что черные дыры возникают только в результате коллапса огромных звезд, превышающих Солнце по массе в 20-30 раз.