Проект на тему "Сила трения: за и против". Опыты по физике

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

Зима - любимое время многих малышей Прикамья! Ведь можно с ветерком скатиться с горки, тихо-тихо проехать по сказочному зимнему лесу и весело кататься с друзьями на коньках. Я тоже люблю зимние забавы!

Проблема: понять, что мешало мне так далеко уехать без ледянки.

Цель данного проекта : раскрытие тайны силы трения.

Задачи:

    проследить исторический опыт человечества по использованию и применению этого явления;

    выяснить природу силы трения;

    провести эксперименты, подтверждающие закономерности и зависимости силы трения;

    понять, где может встретится с силой трения ученица 2 класса;

Для достижения поставленных целей, над данным проектом мы работали по следующим направлениям:

1) Исследование общественного мнения;

2) Изучение теории;

3) Эксперимент;

4) Конструирование.

Гипотеза: сила трения необходима в жизни людей.

Научный интерес заключается в том, что в процессе изучения данного вопроса получены некоторые сведения о практическом применении явления трения.

1 . Что такое трение (немного теории)

Цели: изучить природу сил трения.

Сила трения

Почему со снежной горки лучше ехать на ледянке? Как разгоняется автомобиль, и какая сила замедляет его при торможении? Как удерживаются растения в почве? Почему живую рыбу трудно в руке удержать? Чем объяснить опасность гололедицы в зимний период? Оказывается, все эти вопросы про одно и то же!

Ответы на эти и многие другие вопросы, связанные с движением тел, дают законы трения. Из приведенных вопросов следует, что трение является и вредным и полезным явлением.

Любое тело, двигаясь по поверхности, зацепляется за его неровности и испытывает сопротивление. Это сопротивление называется силой трения . Трение определяется свойствами поверхности твердых тел, а они очень сложны и до конца еще не исследованы.

Если мы попытаемся сдвинуть с места шкаф, то сразу убе-димся, что не так-то просто это сделать. Его движению будет мешать взаимодействие ножек с полом, на котором он стоит. Что определяет величину силы трения? Повседневный опыт свидетельствует: чем сильнее прижать поверхности тел друг к другу, тем труднее вызвать их взаимное скольжение и поддерживать его. Мы постараемся доказать это на опыте.

1.1.Роль сил трения

Давайте представим себе, что однажды на Земле произошло нечто странное! Обратимся к мысленному эксперименту, вообразим, что в мире какому-то волшебнику удалось выключить трение . К чему это привело бы?

Во-первых, мы не смогли бы ходить, колеса машин без толку крутились бы на месте, бельевые прищепки ничего не смогли бы удержать…

Во-вторых, исчезли бы причины, порождающие трение. Во время скольжения одного предмета по другому происходит словно бы зацепление микроскопических бугорков друг за друга. Но если бы этих бугорков не было, то это не значило бы, что сдвин7уть предмет или тащить его стало бы легче. Возник бы так называемый эффект ПРИЛИПАНИЯ, который легко обнаружить, пытаясь, сдвинуть стопку книг в глянцевой обложке вдоль поверхности полированного стола.

Значит, не будь трения, не было бы этих крошечных попыток каждой частички вещества удержать около себя соседок. Но тогда как вообще эти частички держались бы вместе? То есть, внутри различных тел исчезло бы стремление «жить компанией», и вещество развалилось бы до мельчайших деталек, как домик из ЛЕГО.

Вот к каким неожиданным выводам можно прийти, если допустить отсутствие трения. Как и со всем, что нам мешает, с ним надо бороться, но абсолютно избавиться от него не получится, да и не надо!

В технике и в повседневной жизни силы трения играют ог-ромную роль. В одних случаях силы трения приносят пользу, в других - вред. Сила трения удерживает вбитые гвозди, винты, гайки; удерживает нитки в материи, завязанные узлы и т. д. При отсутствии трения нельзя было бы сшить одежду, собрать ста-нок, сколотить ящик.

Трение увеличивает прочность сооружений; без трения нельзя производить ни кладку стен здания, ни закрепление телеграфных столбов, ни скрепление частей машин и сооружений болтами, гвоздями, шурупами. Без трения не могли бы удерживаться растения в почве. Наличие трения покоя позволяет человеку передвигаться по поверхности Земли. Идя, человек отталкивает от себя Землю на-зад, а Земля с такой же силой толкает человека вперед. Сила, движущая человека вперед, равна силе трения покоя между по-дошвой ноги и Землей.

Чем сильнее человек толкает Землю назад, тем больше сила трения, приложенная к ноге, и тем быстрее движется че-ловек.

В гололедицу очень трудно ходить пешком и передвигаться на автомобилях, так как трение очень мало. В этих случаях посыпают тротуары песком и надевают цепи на колеса автомобилей, чтобы увеличить трение покоя.

Силой трения также пользуются для удержания тел в со-стоянии покоя или для их остановки, если они движутся. Вра-щение колес прекращается с помощью тормозов. Наиболее распространены воздушные тормоза, которые работают при помощи сжатого воздуха.

2. Конструкторская работа и выводы

Цели: создать демонстрационный эксперимент; объяснить результаты наблюдаемых явлений.

Изучив литературу, мы с папой сделали несколько опытов. Мы продумали эксперименты, и попытались объяснить их результаты.

Опыт №1

Вернемся к истории о моём катании на горке.

Как-то раз мы с папой катались с ледяной горки. Сначала я съезжала без ледянки. И мне удавалось добраться только до окончания ледяного склона. Затем я решила съехать на пластмассовой ледянке, и мой путь увеличился почти в два раза!

Сейчас, мне понятно, что сила трения в первый раз скатывания была больше, она заставила моё тело затормозить быстрее. Но еще в данном опыте имеет значение твердость тел. Мой зимний костюм гораздо мягче пластмассовой ледянки. Значит, костюм больше взаимодействует с горкой и производит большую силу трения. Жесткая ледянка меньше «сцепляется» с горкой, и трение - меньше!

Опыт №2

На кусок картона шириной в одну зубочистку, а длиной две зубочистки пластилином прикрепим зубочистку поперек картонки посередине. Затем загнем края картонки. Нарисуем на цветной бумаге паучка. Паучка нарисуем так, чтобы его тело было больше прямоугольника. К спинке паука приклеим картонку. Отрежем нитку длиной с руку. Вденем нитку в иголку и протянем ее через картонку. Натянем нитку с паучком и держим ее вертикально. Затем немного ослабим нитку. Как поведет себя паук?

Когда нитка сильно натянута, она касается зубочистки и между ними возникает ТРЕНИЕ. Трение не дает пауку соскальзывать вниз.

Опыт № 3

Этот опыт показывает, от чего зависит сила трения.

Возьмем лист бумаги. Вложим его между страницами лежащей на столе толстой книги. Попытаемся вытащить лист. Проведем опыт еще раз. Теперь вложим лист почти в самый конец книги. Попытаемся вытащить ещё раз. Опыт показывает, что проще вытащить лист из верхней части книги, чем из нижней. Значит, чем сильнее прижимаются поверхности тел друг к другу, тем больше их взаимодействие, то есть больше сила трения.

Опыт №4

При многократном разгибании и сгибании проволоки место изгиба нагревается. Это происходит за счет трения между отдельными слоями металла. Также при натирании монеты о поверхность, монета нагревается.

Опыт № 5

Этот простой опыт показывает применение силы трения.

Заточка ножей в мастерских. Когда нож затупился, его можно заострить специальным устройством. Явление основано на разглаживании зазубрин между соприкасающимися поверхностями.

Результатами этих опытов можно объяснить многие явления в природе и жизни человека. Теперь, когда мне стала известна тайна силы трения, я поняла, что она описывается и во многих сказках! Это для меня стало ещё одним открытием!

Очень хочу привести примеры сказок. В сказке «Колобок» - сила трения помогает главному герою выпутаться из сложных ситуаций («Колобок полежал, полежал, взял да и покатился - с окна на лавку, с лавки на пол, по полу к двери, прыг через порог - да в сени и покатился…»). В сказке «Курочка Ряба» - недостаток силы трения привел к неприятностям («Мышка бежала, хвостиком вильнула, яичко покатилось, упало и разбилось). В сказке «Репка» - трение репы о поверхность земли заставило всю семью сплотиться. Снежная Королева своим волшебством легко преодолевала силу трения («Сани объехали вокруг площади два раза. Кай живо привязал к ним свои санки и покатил»).

Интересно взглянуть на известные произведения иначе!

3. Исследование общественного мнения

Цели: показать, какую роль играет явление трения или его отсутствие в нашей жизни; ответить на вопрос: «Что мы знаем об этом явлении?»

Были изучены пословицы, поговорки, в которых проявляется сила трения покоя, качения, скольжения, изучали человеческий опыт в применении трения, способов борьбы с трением.

Пословицы и поговорки

Не будет снега, не будет и следа.

Тихий воз будет на горе.

Тяжело против воды плыть.

Любишь кататься, люби и саночки возить.

Терпенье и труд все перетрут.

От того и телега запела, что давно дегтя не ела.

И строчит, и валяет, и гладит, и катает. А все языком.

Врет, что шелком шьет.

Все приведенные пословицы, говорят о том, что существование силы трения люди заметили давно. Народ отражает в пословицах и поговорках усилия, которые нужно прикладывать для преодоления сил трения.

Возьмем монету и потрем ею о шершавую поверхность. Мы ощутим сопротивление - это и есть сила трения. Если тереть побыстрее, монета начнет нагреваться, напомнив нам о том, что при трении выделяется теплота - факт, известный еще человеку каменного века, ведь именно таким способом люди впервые научились добывать огонь.

Трение дает нам возможность ходить, сидеть, работать без опа-сения, что книги и тетради упадут со стола, что стол будет сколь-зить, пока не упрется в угол, а ручка выскользнет из пальцев.

Трение - не только тормоз для движения. Это еще и главная причина изнашивания технических устройств, проблема, с кото-рой человек столкнулся также на самой заре цивилизации. При раскопках одного из древнейших шумерских городов - Урука - обнаружены остатки массивных деревянных колес, которым 4,5 тыс. лет. Колеса обиты медными гвоздями с очевидной це-лью - защитить обоз от быстрого изнашивания.

И в нашу эпоху борьба с изнашиванием технических уст-ройств - важнейшая инженерная проблема, успешное решение которой позволило бы сэкономить десятки миллионов тонн ста-ли, цветных металлов, резко сократить выпуск многих машин, запасных частей к ним.

Уже в античную эпоху в распоряжении инженеров находи-лись такие важнейшие средства для снижения трения в самих механизмах, как сменный металлический подшипник смазываемый жиром или оливковым маслом.

Конечно, трение играет в нашей жизни и положительную роль. Никакое тело, будь оно величиной с каменную глыбу или песчинку, никогда не удержится одно на другом, все будет скользить и катиться. Не будь трения, Земля была бы без неровностей, как жидкости.

Я узнала столько интересного и нового о тайнах силы трения. Бороться с ней, чтобы развивать невиданную скорость нужно с умом. Я решила рассказать одноклассникам о том, как правильно и безопасно кататься с горок.

Зима - это время забав и веселых игр. Катание с горок — всеми любимое зимнее развлечение. Скорость, свист свежего ветра, буря переполняющих эмоций - для того, чтобы Ваш отдых был не только приятным, но и безопасным, стоит задуматься о выборе как горок, так и санок.

1.С малышом младше 3 лет не стоит идти на оживлённую горку, с которой катаются дети 7-10 лет и старше.

2. Если горка вызывает у вас опасения, сначала пусть прокатится с неё взрослый, без ребёнка — испытает спуск.

3. Если ребёнок уже катается на разновозрастной «оживлённой» горке, обязательно за ним должен следить взрослый. Лучше всего, если кто-то из взрослых следит за спуском сверху, а кто-то снизу помогает детям быстро освобождать путь.

4. Ни в коем случайте нельзя использовать в качестве горок железнодорожные насыпи и горки вблизи проезжей части автодорог.

Правила поведения на оживлённой горе:

    Подниматься на снежную или ледяную горку следует только в месте подъема, оборудованном ступенями, запрещается подниматься на горку там, где навстречу скатываются другие.

    Не съезжать, пока не отошёл в сторону предыдущий спускающийся.

    Не задерживаться внизу, когда съехал, а поскорее отползать или откатываться в сторону.

    Не перебегать ледяную дорожку.

    Во избежание травматизма нельзя кататься, стоя на ногах и на корточках.

    Стараться не съезжать спиной или головой вперёд (на животе), а всегда смотреть вперёд, как при спуске, так и при подъёме.

    Если мимо горки идет прохожий, подождать, пока он пройдет, и только тогда совершать спуск.

    Если уйти от столкновения (на пути дерево, человек т.д.) нельзя, то надо постараться завалиться на бок на снег или откатиться в сторону от ледяной поверхности.

    Избегать катания с горок с неровным ледовым покрытием.

    При получении травмы немедленно оказать первую помощь пострадавшему, сообщить об этом в службу экстренного вызова 01.

    При первых признаках обморожения, а также при плохом самочувствии, немедленно прекратить катание.

    Различных средств для катания с горок сейчас выпускается огромное количество, так что можно найти подходящее для того, чтобы получить удовольствие от катания с любой горки: от крутой ледяной до пологой, покрытой свежим снегом.

Удобные средства передвижения по ледяной горке:

Ледянка пластмассовая . Самое простое и дешёвое приспособление для катания с горок зимой. Предназначены они для одиночного катания по ледяным и накатанным снежным склонам. Рассчитаны ледянки для детей от 3-х лет, т.к. малышам трудно ими управлять. Ледянка в форме тарелки становится неуправляемой, если сесть в неё с ногами.

Ледянка-корыто очень неустойчива, при малейшей неровности норовит завалиться на бок — таким образом, подлетев на трамплине, приземлиться можно вниз головой. Ледянки не рассчитаны на трамплины или любые другие препятствия, т.к. любой резкий подскок на горке чреват неприятными последствиями для копчика и позвоночника ездока!

Обычные «советские» санки отлично подходят для любых снежных склонов. Можно рулить и тормозить ногами. Завалиться на бок, чтобы избежать опасного столкновения, тоже довольно легко и безопасно.

Снегокат . Для семейного катания не стоит выбирать снегокат - он рассчитан на одного-двух малышей возрастом от 5 до 10 лет. Ни раз были замечены случаи, когда снегокаты цеплялись передним полозом за препятствие (корень дерева, бугорок снега) и переворачивался. Со снегоката трудно слезть на большой скорости, а скорость это транспортное средство развивает немалую на любом склоне и разгоняется быстро. Тормоза расположены спереди, что повышает риск перевернуться через голову при попытке резко затормозить. Если взрослый едет с высокой горы вместе с ребёнком, посадив малыша на снегокат спереди, рулить, тормозить и эвакуироваться в случае опасности им будет очень трудно.

Ватрушки . В последнее время надувные санки всё чаще встречаются на наших горках. Наиболее распространены надувные круги — «санки-ватрушки». Ватрушка лёгкая и отлично едет даже по свежему снегу по совсем ненакатанной горке. Лучше всего кататься на ватрушках с пологих снежных склонов без препятствий в виде деревьев, других людей. Как только скорость движения возрастает, ватрушка становится довольно опасной. Разгоняются ватрушки молниеносно, и скорость развивают выше, чем санки или снегокат на аналогичном склоне, а соскочить с ватрушки на скорости невозможно. На ватрушках нельзя кататься с горок с трамплинами - при приземлении ватрушка сильно пружинит. Даже если не слетишь, можно получить сильные травмы спины и шейного отдела позвоночника. Хороший вариант «ватрушки» — маленькая надувная ледянка (примерно 50 см в поперечнике) - завалиться на бок (слезть) легко.

Внимательно относитесь к выбору горки и средств для катания!

Горка — место повышенной опасности, а не просто очередное развлечение на зимней прогулке наряду со строительством снеговиков и кормёжкой птиц! При катании детей со взрослыми важно не забывать что скорость зависит от массы. То есть чем круче и "ледянее" горка или больше масса ("папа большой и сильный, с ним не страшно"), тем убийственнее сила столкновения. Именно поэтому и в автомобилях детей требуют возить пристёгнутыми в автокреслах, а не на руках у взрослых и не пристёгнутых вместе со взрослым одним ремнём. Сила трения - не магическая сила, она не позволит остановиться мгновенно!

Заключение

    Мы выяснили, что человек издавна использует знания о яв-лении трения, полученные опытным путем.

    Теперь мы точно знаем когда возникает сила трения.

    Нами была создана серия экспериментов, помогающих по-нять и объяснить некоторые «трудные» явления природы.

    Нами были определены литературные произведения, в которых говорится о силе трения.

    Самое главное - мы поняли, как здорово до-бывать знания самим, а потом делиться ими с другими.

Список использованной литературы

1. Элементарный учебник физики:Учебное пособие. В 3-хт. /Под ред.Г.С.Ландсберга. Т.1 Механика.Молекулярная физика.М.:Наука, 1985.

2. Иванов А.С., Проказа А.Т. Мир механики и техники: Кн.для учащихся. - М.: Просвещение, 1993.

3. Энциклопедия для детей. Том 16. Физика Ч.1 Биография физики. Путешествие в глубь материи. Механическая картина мира/Глав. Ред. В.А.Володин. - М.:Аванта+, 2010

4. Детская энциклопедия. Я познаю мир: Физика/сост. А.А. Леонович, под ред. О.Г. Хинн. - М.: ООО «Фирма «Издательство АСТ».2010.-480с.

    http://demo.home.nov.ru/favorite.htm

    http://gannalv.narod.ru/tr/

    http://ru.wikipedia.org/wiki/%D0%A2%D1%80%D0%B5%D0%BD%D0%B8%D0%B5

    http://class-fizika.narod.ru/7_tren.htm

    http://www.physel.ru/component/option,com_frontpage/Itemid,1/

    http://62.mchs.gov.ru/document/1968180

Одна из проблем современной школы – снижение интереса к физике. Я задала себе вопрос: Какими средствами может воспользоваться учитель, чтобы сформировать у учащихся положительное отношение к предмету, вызвать у них познавательный интерес к знаниям? Можно предложить такую схему воспитания у школьников увлечения учебным предметом: от любопытства к удивлению, от него к активной любознательности и стремлению узнать, от них к прочному знанию и научному поиску.

Остановлюсь подробнее на первой стадии - удивления и любопытства: у школьников возникает ситуативный интерес, проявляющийся при демонстрации эффектного опыта, прослушивании рассказа об интересном случае из истории физики, причем его объектом является не содержание предмета, а чисто внешние моменты урока - оборудование, мастерство учителя, формы работы на уроке.

Новизна, непосредственный интерес и эмоциональная привлекательность вызывают прежде всего непроизвольное внимание. В свою очередь, непроизвольное внимание вызывает непроизвольное запоминание. Каждый учитель хорошо знает, что при проверке домашнего задания ученик, отвечая на поставленный вопрос, начинает с описания опыта, который он видел на предыдущем уроке. Зрительные образы демонстрационных опытов сохраняются в памяти и выполняют функцию ориентиров, опор, на основании которых восстанавливается остальная часть изученного учебного материала.

Я полностью согласна с психологами, которые отмечают, что сложный зрительный материал запоминается лучше, чем его описание. Поэтому демонстрация опытов запечатлевается памятью учащихся значительно лучше, чем рассказ учителя о физических опытах.

Однако ученики, вспоминая демонстрационные опыты, вносят в свое описание изменения, которые обусловлены не только забыванием некоторых деталей, но и преобразованием описания в форму, более, легкую для понимания. Вспоминая, ученики выделяют детали опытов, которые представляются им наиболее значимыми и интересными. Все это свидетельствует о том, что припоминание является не простым воспроизведением, а конструктивным процессом.

Таким образом, я считаю, что демонстрация опытов развивает внимание и память учащихся на стадии эмпирического познания изучаемых явлений и закономерностей.

В этой связи предлагается использовать эффектные опыты, поскольку у учащихся возникает не только живой интерес к демонстрации явления, но и бурное обсуждение разгадки явления (проблемная ситуация). Таким образом, при показе эффектного опыта, мы убиваем сразу двух зайцев: демонстрируем физическое явление и создаем проблемную ситуацию. А в качестве "побочного эффекта" пробуждаем интерес к предмету. Поэтому, характер и форма организации учебно-познавательной деятельности учащихся: проблемно – поисковый, исследовательский и репродуктивный характер деятельности позволяет осуществить комплексное применение знаний учащихся.

Я как учитель совместно с учащимися ставила цели:

Образовательная:систематизация знаний по теме “Сила трения”: знать природу силы трения, формировать умение различать виды трения; сравнивать их в разных практических ситуациях; обосновывать необходимость увеличения и уменьшения силы трения; формировать у ребят умение осуществлять самоконтроль с помощью конкретных вопросов и использования дидактического материала.

Развивающая:совершенствовать навыки самостоятельной работы, активизировать мышление школьников, умение самостоятельно формулировать выводы, развивать речь. Развитие творческих способностей на основе практической работы. Отработка практических навыков в работе с физическим оборудованием.

Воспитательная: развитие чувства взаимопонимания и взаимопомощи в процессе совместного выполнения экспериментального задания; развитие мотивации изучения физики, используя разнообразные приёмы деятельности, сообщая интересные сведения.

В ходе такого вида деятельности у учащихся формируются способности к структурированию и систематизации изучаемого предметного содержания. Освещение темы сопровождается демонстрацией презентации с последующим обсуждением и объяснением явлений, происходящих из-за наличия силы трения. Демонстрируются способы изменения силы трения на практике. Учащиеся имеют возможность анализировать происходящее и делать выводы.

Наряду с этим, происходит развитие метапредметных УУД: коммуникативные – выражать с достаточной полнотой полнотой и точностью свои мысли, добывать недостающую информацию с помощью вопросов; регулятивные – осознавать самого себя как движущую силу своего научения, свою способность к преодолению препятствий и самокоррекции, составлять план решения задачи, самостоятельно исправлять ошибки; познавательные – уметь создавать модели для решения учебных и познавательных задач, выделять и классифицировать существенные характеристики объекта. А так же планируются результаты личностные: формирование целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики.

Цель:

  • познакомить с видами силы трения;
  • выяснить от чего зависит сила трения

Задача:

  • определить значение силы трения в повседневной жизни, природе.

Трение – явление, сопровождающее нас с детства, на каждом шагу, а потом ставшее таким привычным и таким незаметным.

Сила трения в сказках: “Колобок” (сила трения качения), “Репка” (сила трения покоя), “Медвежья горка” (сила трения скольжения), “Царевна лягушка” (сила трения качения).

Трение – один из видов взаимодействия тел. Оно возникает при соприкосновении двух тел. Трение, как и все другие виды взаимодействия, подчиняется третьему закону Ньютона: если на одно из тел действует сила трения, то такая же по модулю, но направленная в противоположную сторону сила действует и на второе тело.

Виды силы трения: Fтр.качения, Fтр.скольжения, Fтр.покоя, но возможна замена одного вида трения другим (Fтр.скольжения на Fтр.качения). При помощи бруска, динамометра и двух карандашей можно продемонстрировать, что Fтр.скольжения больше, чем Fтр.качения.

Зависимость силы трения от некоторых показателей демонстрируют следующие опыты:

С помощью динамометра, бруска и набора грузов показываем, что сила трения зависит от силы нормального давления;

На место гладкой поверхности кладем шероховатый лист бумаги (сила трения зависит от материала);

Устраняем пластилин с поверхности, измеряем при этом силу трения до и после;

Используем смазку, что ведет к уменьшению силы трения;

Сила трения почти не зависит от площади опоры.

У силы трения есть свои плюсы и, к сожалению, минусы. В том случае, когда оно полезно – стараются увеличить. Если вредно – пытаются уменьшить (использование смазки, подшипников, которые уменьшают силу трения в 20-30 раз).

Вот несколько примеров. Мелодия, исходящая от скрипки существует за счет того, что смычок приводит в колебание струны. Струна под смычком всегда движется медленнее, чем смычок. Когда струна движется навстречу смычку, то сила трения скольжения тормозит струну, замедляя ее движение. А когда смычок движется по направлению струны, то сила трения скольжения наоборот “тащит” струну за собой, не давая ей отставать. Когда зимой на дорогах образовывается лед, то велика вероятность аварий, также пешеходы могут получить травмы на заледеневших тропинках. Чтобы этого избежать, можно насыпать песок на дорогу, тем самым увеличили силу трения. Польза силы трения качения в том, что катящееся колесо немного вдавливается в дорогу, и перед ним образуется небольшой бугорок, который приходится преодолевать. Так происходит движение. В 1779 году французский физик Кулон установил, от чего зависит максимальная сила трения покоя. Чем тяжелее книга, лежащая на столе, чем сильнее она прижимается к столу, тем труднее ее сдвинуть. Именно за счет трения покоя все остается на своих местах: шнурки не развязываются, гвоздь держится в стене, шкаф стоит на своем месте. Можно сделать выводы о плюсах силы трения. Благодаря этой силе мы можем стоять или двигаться вперед, замедлять или ускорять движение отдельных тел.

Но, наряду с плюсами, есть еще и минусы. Человек никогда не сможет изобрести вечный двигатель, т.к. со временем любое движение прекратится из-за силы трения и приходится время от времени это движение сохранять – воздействовать на него. Трение не только тормоз для движения, это еще и главная причина изнашивания технических устройств - проблема, с которой человек столкнулся на заре цивилизации.

Леонардо де Винчи занимался многими вопросами деталей машин, трения и износа. Сила трения направленна в противоположную от приложенной силы сторону, и это приводит к совершению большой работы.

Основной характеристикой трения является коэффициент трения “мю”, который определяется материалами, из которых изготавливают поверхности взаимодействующих тел.

В жизни многих растений трение играет положительную роль. Например, лианы, хмель, горох, бобы и др. вьющиеся растения благодаря трению могут цепляться за опоры, удерживаются на них и тянутся к свету. Между опорой и стеблем возникает большая сила трения, т.к. стебли плотно прилегают к опоре. У растений, имеющие корнеплоды, такие, как морковь, свекла, сила трения о грунт способствует удержанию их в почве. С ростом корнеплода, давление окружающей земли на него увеличивается, и сила трения тоже возрастает. Поэтому так трудно вытащить из земли большую репу, свеклу. Таким растениям, как репейник, трение помогает распространять семена, имеющие колючки с небольшими крючками на концах. Эти колючки зацепляются за шерсть животных и вместе с ними перемещаются. Семена же гороха, ореха, благодаря своей шарообразной форме и малому трению качения, перемещаются легко сами.

Организмы многих живых существ приспособились к трению, научились его уменьшать или увеличивать. Тело рыб имеют обтекаемую форму и покрыто слизью, что позволяет им развивать при плавании большую скорость. Щетинистый покров моржей, тюленей, морских львов помогает им передвигаться по суше и льдинам. Чтобы увеличить сцепление с грунтом, стволами деревьев, на конечностях животных имеется целый ряд приспособлений: когти, острые края копыт, подковные шипы, тело пресмыкающихся покрыто бугорками и чешуйками. Действие органов хватания (хватательные органы жуков, клешни рака; передние конечности и хвост некоторых пород обезьян; хобот слона) тоже связано с трением. У многих живых организмов существуют приспособления, благодаря которым трение получается небольшим при движении в одном направлении и резко увеличивается при движении в обратном направлении. Это, например, шерсть и чешуйки, растущие наклонно к поверхности кожи. На этом принципе основано движение дождевого червя. Водяной жук-вертячка быстро носится на поверхности воды. Быстроте передвижения он обязан покрывающей тело жировой смазке, которая значительно уменьшает трение о воду.

Кости животных и человека в местах их подвижного сочленения имеют очень гладкую поверхность, а внутренняя оболочка полости сустава выделяет специальную жидкость, которая служит суставной “смазкой”. При глотании пищи и ее движении по пищеводу трение уменьшается за счет предварительного дробления и пережевывания пищи, а также смачивания ее слюной. При действии же органов движения у животных и человека трение проявляется как полезная сила.

Пословицы и поговорки о силе трения, сказанные людьми и взятые из жизненного опыта:

  • Скрипит, как несмазанная телега.
  • От того телега запела, что давно дегтя не ела.
  • Против шерсти не гладят.
  • Прошло дело как по маслу.
  • Хорошо смазал – хорошо поехал.
  • Живет как сыр в масле.
  • Где скрипит, там и мажут
  • Не тертая стрела в бок идет.
  • Плуг от работы блестит.
  • Три, три – будет дырка.

Опыты, демонстрирующие силу трения:

Опыт №1 . Вращение сырого и вареного яйца. Вареное яйцо вращается быстрее. В сыром яйце его желток и белок стараются сохранить неподвижное состояние (в этом проявляется их инерция) и своим трением о скорлупу тормозят его вращение.

Опыт №2. Развести в маленькой баночке марганцовку до темно-фиолетового цвета. Налить в другую банку простую воду. Затем, набрать пипеткой раствор марганцовки и капнуть в банку с высоты 1-2 сантиметра от поверхности воды. Кончик пипетки не должен колебаться. Руки должны опираться н локти. Капля, упав в воду, превращается в кольцо правильной формы, которое будет опускаться на дно банки, увеличиваясь в размере. Это объясняется тем, что когда капля упала в воду, она, встретив сопротивление, расплющилась. При движении ее вниз вследствие трения о воду, ее края завернулись. Получилось вихревое кольцо в виде баранки, вращающейся вокруг своей кольцевой оси.

Опыт №3. Положить на книгу шестигранный карандаш параллельно ее корешку. Медленно поднимать верхний край книги до тех пор, пока карандаш не начнет скользить вниз. Чуть уменьшить наклон книги и закрепить ее в теком положении, подложив под нее что-нибудь. Теперь карандаш, если его снова положить на книгу, съезжать не будет. Его удерживает на месте сила трения покоя. Достаточно щелкнуть пальцем по книге, сила трения покоя ослабнет, и карандаш поползет вниз.

Французский физик Гильом о роли силы трения: “Всем нам случалось выходить в гололедицу; сколько усилий стоило нам удерживаться от падения, сколько смешных движений приходилось нам проделать, чтобы устоять! Это заставляет нас признать, что обычно земля, по которой мы ходим, обладает драгоценным свойством, благодаря которому мы сохраняем равновесие без особых усилий. Та же мысль возникает у нас, когда мы едем на велосипеде по скользкой мостовой, или когда лошадь скользит по асфальту и падает. Изучая подобные явления, мы приходим к открытию тех следствий, к которым приводит трение. Инженеры стремятся его устранить в машинах – и хорошо делают. Однако, это правильно лишь в узкой специальной области. Во всех прочих случаях мы должны быть благодарны трению: оно дает нам возможность ходить, сидеть и работать без опасения, что книги и чернильница упадут на пол, что стол будет скользить, пока не упрется в угол, а перо выскользнет из пальцев”.

Урок по физике «Сила трения»

Тема урока: Сила трения.

Цели урока: актуализировать и углубить знания учащихся о силе трения, выявить основные особенности силы трения, учет и применение в технике.

Оборудование: деревянный брусок, динамометр, набор грузов, листы наждачной бумаги, войлока, деревянная пластина, таблицы, дисковод, проектор, презентации урока.

Ход урока

I. Мотивация.

— Мы знаем, что физика – наука о природе. Вспомним Ф.И. Тютчева:

«Не то, что мните вы, природа:

Не слепок, не безликий лик, —

В ней есть душа, в ней есть свобода.

В ней есть любовь, в ней есть язык».

Да, у природы есть свой язык, и мы должны его понимать.

Падение яблока, взрыв сверхновой звезды, прыжок кузнечика или радиоактивный распад веществ происходят в результате взаимодействий. Существует четыре вида фундаментальных взаимодействий.

    Гравитационное взаимодействие

    Электромагнитное взаимодействие

    Слабое взаимодействие

    Сильное взаимодействие

Количественной мерой взаимодействия является – сила. Среди многочисленных сил электромагнитной природы выделим силу трения. В земных условиях трение сопутствует любому движению и покою тел.

II. Новый материал.

— Ребята, тема нашего урока «Сила трения».

С явлением трения мы знакомы уже давно. В походе можно услышать: «Не натрите ноги», в школе – «Сотрите с доски записи». Первые исследования трения были проведены великим итальянский ученым Леонардо да Винчи более 400 лет назад, но эти работы не были опубликованы. Законы трения были описаны французским ученым Гильомом Амонтоном в 1699 и Шарлем Кулоном в 1785 г.

— Ребята, дайте, пожалуйста, определение силы трения.

— Сила трения – сила, взаимодействующая при соприкосновении поверхностей тел, препятствующая их относительному перемещению, направленная вдоль поверхности соприкосновения.

Выясним причины трения.

— Сейчас мы, пользуясь предложенным оборудованием, определим силу трения. У вас на столах динамометры. Возьмем брусок, прикрепим его к динамометру, и будем тянуть брусок по горизонтальной поверхности так, чтобы он двигался равномерно. Эта сила по модулю равна силе трения, действующей на брусок.

I ряд дерево — по дереву
II ряд дерево — по войлоку
III ряд дерево — наждачная бумага

— Почему получились разные значения?

    Причиной трения являются шероховатости соприкасающихся поверхностей: от смазки, веса тела, состояния трущихся поверхностей.

    Другая причина – межмолекулярное притяжение, действующее в местах контакта трущихся тел. (Проявляется в тех случаях, когда поверхности соприкасающихся тел хорошо отполированы).

При контакте твердых тел возможны три вида трения.

Опыт №1. Брусок, динамометр (трение покоя)

Динамометр прикрепляем к бруску и тянем. Действующая сила между бруском и поверхностью – сила трения покоя.

Опыт №2. Брусок, динамометр (трение скольжения)

Брусок скользит по поверхности – возникающая сила трения – сила трения скольжения.

Опыт №3. Тележка, динамометр

Тележка катиться по поверхности. Динамометр показывает силу трения качения.

Трение качения меньше трения скольжения и покоя. Однако из самых гениальных изобретений человечества – колесо. Хорошо известно, что несравнимо легче везти груз на тележке, чем тащить его.

— А сейчас просмотрим презентацию к этой части урока.

Очевидно, в реальной жизни важно учитывать трение. Посмотрим, как это делается в задаче о движении автотранспорта по дороге.

Ребята, вы видите, что для полной остановки автомобиля требуется определенное время. Поэтому соблюдайте правила пешеходов при переходе через дорогу.

В природе и технике трение имеет большое значение. Оно может быть полезным и вредным. Когда оно полезно, его стараются увеличить. Например, поверхности шин у автомобиля делают с ребристыми выступами зимой, когда дорога бывает скользкая, ее посыпают песком.

Трение играет большую роль в жизни растений и животных.

Выступление учащихся.

О роли трения в жизни растений и животных.

В жизни многих растений трение играет положительную роль. Растения благодаря трению цепляются за находящиеся поблизости опоры, удерживаются на них и тянутся к свету. Трение здесь создается за счет того, что стебли многократно обвивают опоры и поэтому очень плотно прилегают к ним.

А вот растения, имеющие корнеплоды, такие, как морковь, свекла, брюква. Сила трения о грунт способствует удержанию корнеплода в почве. С ростом корнеплода давление окружающей земли на него увеличивается, а это значит, что сила трения тоже возрастает. Именно поэтому так трудно вытащить из земли большую свеклу, редьку, репу.

Таким растениям, как репейник, трение помогает распространять семена, имеющие колючки с небольшими крючками на концах.

Эти колючки зацепляются за шерсть животных и вместе с ними перемещаются. Семена же гороха, орехи благодаря своей шарообразной форме и малому трению качения перемещаются легко сами.

Путем длительной эволюции организмы многих живых существ приспособились к трению, научились его уменьшать или увеличивать. Так, тело рыб имеет обтекаемую форму и покрыто слизью, что позволяет им развивать при плавании большую скорость. Кости животных и человека в местах их подвижного сочленения имеют очень гладкую поверхность, а внутренняя оболочка полости сустава выделяет специальную синовиальную жидкость, которая служит как бы суставной «смазкой». При глотании пищи и ее движении по пищеводу трение уменьшается за счет предварительного дробления и пережевывания пищи, а также смачивания ее слюной.

Действие органов хватания (к ним можно отнести клешни рака, передние конечности и хвост некоторых пород обезьян и др.) тоже тесно связано с трением. Ведь предмет или живое существо будет тем прочнее схвачено, чем больше трение между ним и органом хватания. Величина же силы трения находится в прямой зависимости от прижимающей силы. Поэтому органы хватания устроены так, что могут либо охватывать добычу с двух сторон и зажимать ее, либо обвивать несколько раз и за счет этого стягивать с большой силой.

Во всех этих примерах трение полезно. Но оно может быть и вредным, тогда его необходимо уменьшить. В этом случае применяют смазку или подшипники.

Казалось бы, что может быть общего между подшипником и памятнику Петру Великому в Санкт-Петербурге. Послушаем историческую справку.

Выступление учащихся.

Может быть, не всем известны некоторые технические подробности создания памятника великому организатору государства Российского.

Для пьедестала памятника подготовили монолитную гранитную глыбу весом 80 тыс. пудов, т.е. более тысячи тонн! И доставили ее из деревни Лахти, что на берегу Финского залива, в Петербург. Как же в XVIII веке, не имея ни мощных тягачей, ни подъемных кранов, люди могли совершить такое чудо?

Обнаружена эта глыба была местным крестьянином Вишняковым. Глыбу называли Гром-камнем, так как в него однажды ударила молния, отбив большой осколок. Около 9 км пропутешествовал Гром-камень по суше, а потом по Неве на плотах был доставлен в Петербург. Небывалый успех русской техники того времени был даже отмечен особой медалью, на которой была вычеканена надпись: «Дерзновению подобно, 1770 год». И действительно, это был акт дерзновенный! Вся Европа только и говорила об этой невиданной операции, какой не повторялось с времен перевозки в древний Рим египетских памятников. Как же это было сделано? Смелый, остроумный проект передвижения Гром-камня дал кузнец из казенных мужиков, оставшийся, к сожалению, неизвестным. Он предложил перекатить камень на специально отлитых бронзовых шарах, заключенных в салазки. Салазки представляли собой большие бревна с выдолбленными вдоль них желобами, обитыми внутри медью. Гранитную глыбу поместили на помост из нескольких рядов плотно уложенных бревен, под которым находились желоба с шарами. Согнанные из ближайших деревень крестьяне при помощи канатов и воротов двигали камень к берегу. Несколько мужиков должны были все время смазывать шары говяжьим салом и переставлять их вперед после того, как глыба пройдет через них; 120 дней путешествовал так по суше Гром-камень. Доставленный в Петербург и обработанный мастерами-каменотесами, он стал прекрасным пьедесталом памятника Петру.

Да, изобретение русских крестьян послужило прообразом современного подшипника. Их устанавливают в автомобилях, токарных станках, электрических двигателях и велосипедах.

— Вот и подошел к концу наш урок. Сегодня мы с вами подробно поговорили об одной из сил э/м природы.


Актуальность: Работа предназначена для формирования мировоззрения о реальной действительности. Ответы на многие важные вопросы, связанные с движением тел, дают законы трения. Актуальность темы в том, что она связывает теорию с практикой, раскрывает возможность объяснения природы, применение и использование изученного материала. Данная работа позволяет развивать творческое мышление, умение приобретать знания из различных источников, анализировать факты, проводит эксперименты, делать обобщения, высказывать собственные суждения, задумываться над загадками природы и искать тропинку к истине.




Проследить исторический опыт человечества по использованию и применению этого явления; выяснить природу явления трения, закономерности трения; провести эксперименты, подтверждающие закономерности и зависимости силы трения; проделать демонстрационные эксперименты, доказывающие зависимость силы трения от силы нормального давления, от свойств соприкасающихся поверхностей.Задачи:






Коси, коса, пока роса, роса долой – и ты домой. Не подмажешь, не поедешь. Пошло дело, как по маслу. Без мыла в душу влезет. Кататься, как сыр в масле. От того телега запела, что давно дёгтя не ела.Пословицы объясняются существованием трения и использованием смазки для его уменьшения.




Тихая вода подмывает берега.Между отдельными слоями воды, текущей в реке, действует трение, которое называется внутренним. В связи с этим, скорость течения воды на разных участках поперечного сечения русла реки неодинакова: самая большая - в середине русла, самая маленькая - у берегов. Сила трения не только тормозит воду, но и действует на берег, вырывая частицы грунта и, тем самым, подмывая его.








































3. История изучения трения Леонардо да Винчи Эйлер Леонард Амонт Кулон Шарль Огюстен де


Год Имя ученого ЗАВИСИМОСТЬ модуля силы трения скольжения от площади соприкасающихся тел от материала от нагрузки от относительной скорости движения трущихся поверхностей от степени шероховатости поверхностей 1500 Леонардо да Винчи Нет Да НетДа 1699Амонтон Нет Да Нет 1748 Леонард Эйлер Нет Да 1779Кулон Да 1883Н.П.Петров НетДа




Вывод: Сила трения скольжения зависит от нагрузки, чем больше нагрузка, тем больше сила трения. Результаты экспериментов: 1. Зависимость силы трения скольжения от нагрузки. m (г) F тp (Н)0,50,81,0





Когда завязываем пояс Без трения все нитки выскальзывали бы из ткани. Без трения все узлы бы развязались. Без трения нельзя бы было ступить и шагу, да и, вообще, стоять. Трение принимает участие там, где мы о нем даже и не подозреваем Заключение Когда шьем Когда ходим



Мы выяснили,что человек издавна использует знания о явлении трения,полученные опытным путем. Нами была создана серия экспериментов, помогающих понять и объяснить некоторые трудные наблюдения. Сила трения возникает между соприкасающимися поверхностями. Сила трения зависит от рода соприкасающихся поверхностей. Сила трения не зависит от площади трущихся поверхностей. Сила трения уменьшается при замене трения скольжения трением качения, при смазывании трущихся поверхностей. Выводы по результатам работы:


1. Введение

Цель данной работы – изучить вопросы, связанные с возникновением трения. Эта тема, казалось бы, давно известная, остаётся по-прежнему актуальной , так как вопрос о силе трения полностью не решен ни физиками, ни математиками, тогда как трение - одна из важнейших проблем, например, для машиностроения. Задача работы – провести эксперименты, позволяющие исследовать от чего зависит сила трения. Таким образом, объектом исследования является трение.

Гипотеза : мир без трения был бы не узнаваем и ужасен. Не было бы развития цивилизации, ведь наши предки с помощью него добывали огонь . Технический прогресс при отсутствии колеса должен был стать каким-то другим. Кроме того, возможно, что трение - один из источников внутреннего тепла Земли.

Практическая значимость работы состоит в том, что она посвящена теории трения, которая до сих пор не является завершенной. Но для того, чтобы привлечь новых будущих исследователей их нужно заинтересовать проблемой. А для этого можно использовать материал данной работы.

Новизной в работе будет гипотеза об уменьшении молекулярного трения под большими горными массивами из-за большого давления. А это должно приводить к увеличению их подвижности. То есть повышать возможность землетрясений.

2. Основные вопросы теории трения

2.1. Мир без трения

Давайте вначале немного пофантазируем и представим, что было бы, если бы трение исчезло? Движущийся автомобиль не сможет остановиться, а неподвижный тронуться с места. Пешеходы упадут на асфальт и не смогут подняться. Кроме того, где пол ниже. они неожиданно окажутся голыми, так как нитки в тканях удерживаются трением. Вся мебель в комнате соскользнёт в один угол. Тарелки и стаканы также будут соскальзывать со стола. Гвозди и шурупы выскочат из стен. Ни одну вещь нельзя будет удержать в руках. Взять и перевернуть страницу книги тоже станет проблемой .

Интересно придумано и рассказано о мгновенном сильном уменьшении трения в книге для детей «Остров неопытных физиков» . «Все части автомобиля, основанные на использовании трения – тормоза, сцепление, приводной ремень, - перестали работать, а те части, для которых трение было помехой стали двигаться ещё быстрее. Поэтому двигатель продолжал работать и даже увеличил число оборотов – трение в цилиндрах и подшипниках уже не тормозило его…». Но автомобиль не мог двигаться, так как исчезло трение между шинами и асфальтом. Таким образом, колёса вертелись, а машина стояла месте. Описание такого же мира дано в стихотворении:

В вот, что пишет известный швейцарский физик, лауреат Нобелевской премии Шарль Гийом: «Вообразим, что трение может быть устранено совершенно. Тогда никакие тела, будь они величиной с каменную глыбу или малы, как песчинка, никогда не удержится одно на другом: всё будет скользить и катиться, пока не окажется на одном уровне. Не будь трения, Земля представляла бы шар без неровностей, подобно жидкому».

2.2. Две причины возникновения трения

Два самых главных изобретения – колесо (рис.1) и добывание огня (рис.2) - связаны именно со стремлением уменьшить или увеличить эффект трения.

Трение - следствие многих причин. Главные из них - две. Во-первых, зазубрины одной поверхности цепляются за шероховатости другой. Это так называемое геометрическое трение (рис.3). Во-вторых, молекулярное трение , когда поверхности обоих тел достаточно гладкие. В этом случае начинает сказываться притяжение между их молекулами (рис.4). Наука, изучающая трение называется трибологией (от греч."трибос"- трение). Трение - механическое сопротивление движению, возникающее в месте касания двух прижатых друг к другу тел при их перемещении одного относительно другого. Сила сопротивления F , направленная противоположно перемещению тела, называется силой трения. Законы сухого трения сформулировал в 1781 году Ш. О. Кулон (1736 - 1806). Они были определены опытным путём. Но ещё задолго до этого, среди бесчисленных научных и творческих достижений Леонардо да Винчи была и формулировка законов трения. Амонтон и Кулон ввели понятие коэффициента трения как отношения силы трения к нагрузке. Этот коэффициент определяет силу трения для любой пары контактирующих материалов. Обозначается греческой буквой μ [мю]. До сих пор формула:

F тр =µР,

где Р - сила прижатия или вес тела , a F тр - сила трения , является главной формулой. Её вариант:

F тр =μ N ,

где N – сила реакции опоры . . N =Р. Чертёжи, на которых изображены все силы, действующие на брусок, см. на рис. 5.

Коэффициент трения зависит не только от того, какие материалы контактируют, но и от того, насколько гладко обработаны контактирующие поверхности. Более точно формулу можно записать, учитывая молекулярное трение:

F = μ (N + S p 0 ),

где р 0 – добавочное давление , вызванное силами молекулярного притяжения.

2.3. Виды трения

Существует трения покоя, скольжения и качения. Выяснилось, что обычно сила трения скольжения при медленном движении меньше силы трения покоя (то есть страгивания с места). Кулон изучал именно силу трения при медленном движении тел и установил, что эта сила не зависит от величины скорости, а только от направления движения. Самым маленьким является трение качения. Поэтому при перемещении тяжелых предметов (корабли по суше, каменные блоки для строительства) люди подкладывали под них катки (обычные брёвна). Круглый предмет (например, бочку) легче катить, чем волочить. На этом же основано применение в технике подшипников: шариковых и роликовых (рис. 6).

Другой пример из практики, о различиях в применении видов трения: если автомобиль тормозит скольжением (юзом), то тормозной путь длиннее, чем при торможении качением, когда колесо вращается и своей поверхностью хорошо цепляется за дорожное покрытие. Это должен помнить и водитель, и пешеходы, переходящие улицу!

3. Современная картина трения

Как образно выразился один из основателей науки о трении, Ф. Боуден, «наложение двух твердых тел одного на другое подобно наложению перевернутых швейцарских Альп на австрийские Альпы – площадь контакта оказывается очень малой» (рис.7). Фотографии различных поверхностей, полученные с помощью микроскопов, подтверждают сравнение с горами (рис. 8,9). При попытке движения остроконечные «горные пики» цепляются друг за друга и сминают свои вершины. При попытке сдвига в горизонтальном направлении один пик начинает прогибать другой, то есть сначала попытается сгладить дорогу (рис. 10 а), а потом уже скользить по ней (рис. 10 б). Если тянуть тело динамометром с постоянной скоростью, то окажется, что само тело при этом движется рывками. Д вижение оказывается колебательным: залипание и скольжение поочерёдно сменяют друг друга.

4. Вибрационное сглаживание

Иногда бывает важно исключить движение рывками. Например, робот- сварщик должен плавно вести сварочный аппарат вдоль сварочного шва. Если он будет дёргаться, то в одном месте будет перегрев и свариваемые пластины искорёжатся, а в другом - сварка не произойдёт совсем, так как аппарат слишком быстро проскочит вперёд. Одним из путей борьбы с этими рывками может служить вибрационное сглаживание. Под действием быстрых вибраций сухое трение начинает напоминать жидкое, так как частицы из-за тряски хуже дотрагиваются друг до друга и сыпучий материал из твердых частиц начинает себя вести как жидкий. И в частности может легко перемещаться. И здесь тоже могут быть негативные примеры. Пересекая Ладожское озеро в осенние бурные дни, некоторые корабли, перевозившие зерно, начинали сильно раскачиваться с борта на борт и опрокидывались. Выяснилось, что проектировщики считали, будто зерно в трюме будет лежать неподвижно за счёт сухого трения, сцепляющего отдельные зерна между собой. Но вибрации делали сыпучий материал подобным жидкому. Зерно начинало вести себя как жидкость, наваливаясь при перевозке на наклонный борт корабля, вызывая его опрокидывание. Как только эффект был понят, трюмы поделили на отсеки, как в тех кораблях, что перевозят настоящие жидкости .

5. Жидкое трение

При движении твёрдого тела в жидкости или газе на него действует сила сопротивления среды, которую можно считать особым видом силы трения. Эта сила направлена против движения тела и тормозит его. Главная особенность силы сопротивления состоит в том, что она возникает только при движении тела. Она зависит от его скорости тела, а также от формы и размеров. Поэтому, например, автомобилям придают обтекаемую форму, особенно гоночным. Кроме того сила сопротивления зависит от состояния поверхности тела и вязкости среды, в которой оно движется. В жидкостях и газах силы трения покоя нет .

Жидкое трение намного меньше сухого, так как молекулы жидкости могут легко перемещаться относительно друг друга. Поэтому для уменьшения трения успешно применяют смазку.

5.1. Износ. Смазка

В результате трения детали механизмов истираются и поверхности разрушаются. Одним из методов борьбы с износом является смазка. При этом обе трущиеся поверхности покрываются защитными пленками из молекул смазки. Коэффициент трения снижается. Это происходит потому, что м олекулы жидкости притягиваются друг к другу слабее, по сравнению с молекулами твёрдого тела. Следовательно, при наличии смазки между трущимися поверхностями они легко скользят относительно друг друга. В настоящее время разрабатываются препараты, позволяющие в процессе эксплуатации, не производя полной разборки узлов и агрегатов, частично восстанавливать изношенные поверхности трения с одновременным повышением их износостойкости .

5.2. Аквапланирование

Аквапланирование выглядит так: на мокрой дороге шина скользит по воде, как глиссер, то есть контакт колеса с дорогой исчезает. Автомобиль теряет управляемость. Исследования выявили, что по мере роста скорости перед колесом появляется водяной валик, а снизу появляется водяной клин. С ростом скорости эффект нарастает. При этом машина движется не по асфальту, а как бы «плывёт» по воде (рис. 11).

Помимо изучения теоретического материала авторы работы провели ряд экспериментов, позволяющих самостоятельно определять F тр и зависимость коэффициента трения от тех или иных физических величин или условий . Результаты см. в приложении.

    Сравнение силы трения покоя, скольжения и качения (табл.1). Фото.1,2.

    Исследование зависимости силы трения от площади контакта. Для этой цели брусок во втором опыте положили на другой бок (табл.2). Фото. 3.

    Зависимость силы трения от нагрузки (веса бруска и грузов) или иначе от силы реакции опоры N (табл. 3).

    Зависимость от рода вещества и условий обработки двух поверхностей (табл. 4-7).

    Сида трения F тр (или коэффициент трения  ) практически не зависит от скорости при малых относительных скоростях движения соприкасающихся поверхностей. Но согласно изученным теоретическим материалам с ростом скорости сила трения слегка уменьшается.

Общие выводы:

    Сила трения F тр практически не зависит от площади контакта и от скорости (при малых скоростях).

    Сила трения F тр зависит от нагрузки (N =Р), от рода вещества и условий обработки поверхностей. Обычно значения коэффициентов трения лежат в пределах от 0,1 до 1,05 (0,1 1,05).

    Значение силы трения в порядке уменьшения: трение покоя, скольжения, качения. F тр покоя  F тр ск.  F тр кач.

7. Региональный компонент

В сентябре 2002 в Северной Осетии сошёл ледник Колка. Ледово-грязе-каменный поток продвинулся почти на 20 км по долине реки Геналдон со скоростью порядка 150-200 км/ч, разрушив строения, базы отдыха, линии электропередач. Основные предположения о причинах этой катастрофы заключаются в том, что произошла внезапная подвижка, обусловленная комплексом причин сейсмического, вулканического и метеорологического характера. Данный ледник относится к категории пульсирующих. На момент катастрофы он ещё не «созрел» для падения. Это подтверждалось данными съёмок из космоса. Таким образом, силы трения покоя удерживали всю массу ледника, Но в результате внешнего воздействия типа удара или взрыва на всю массу снега произошёл процесс, аналогичный вибрационному сглаживанию. Схема процесса: удар, частицы приподнялись вверх, нагрузка Р уменьшилась и, следовательно, трение тоже стало меньше.

При движении одних тел по поверхности других возникает трение. Это происходит, когда шероховатости одной поверхности цепляются за шероховатости другой или когда гладкие поверхности начинают прилипать друг к другу за счет межмолекулярного притяжения. Но, как известно, между молекулами существует не только взаимное притяжение. Если молекулы окажутся слишком близко друг к другу, то они будут отталкиваться. Гипотеза состоит в следующем: очень тяжелые литосферные плиты с материками и горными системами оказывают на нижележащие слои настолько огромное давление, что начинает сказываться отталкивание молекул. Это приводит к дополнительной подвижности нагруженных областей плиты, по сравнению с менее нагруженными и, следовательно, менее подвижными окраинами. Результатом это будет невозможность движения всего комплекса, как единого целого. В таком случае появятся дополнительные нагрузки отдельных областей, что может приводить к землетрясениям, снимающим возникающие механические напряжения.

9. Заключение

Только в США над данной темой в настоящее время работают 1000 исследователей, а в мировой науке публикуется более 700 статей ежегодно. Но как остроумно подметил известный физик Р. Фейнман - все наши измерения для определения коэффициентов трения фактически являются рассмотрением случаев трения "грязь по грязи". Микроскопы различных конструкций показывают сложность проблемы. На рис.11 представлен атомно-силовой микроскоп. Даже для него существует проблема, которая состоит в том, что на воздухе поверхность образца покрывается парами воды толщиной до 20-30 молекул. Таким образом, данная тема позволяет работать над ней ещё долгие годы многим исследователям. И авторам этой работы также удалось не только провести стандартные эксперименты и убедиться в точности уже известных сведений о силе трения, но и высказать свою научную гипотезу о роли молекулярного трения.

10. Литература

    Агаян В. Дазен Н. Что произойдет, если исчезнет трение?// Квант. №5. 1990.

    Домбровский К. И. Остров неопытных физиков. – М.: Детская литература, 1973.

    Первозванский А.А. Трение - сила знакомая, но таинственная.//Соросовский Образовательный Журнал. №2.1998.

    Перышкин А.В. Физика – 7. – М..: Дрофа, 2008.

    Матвеев А. Трибоника или капля смазки.// Юный техник, №1.1987.

    Кравчук А.С. Трение."Современное естествознание″,т.З.М.:Магистр -Пресс. 2000.

7. Солодушко А.Д. Эксперимент при изучении силы трения.//Физика в школе. №5.2001