Фундаментальные физические взаимодействия. Четыре фундаментальных взаимодействия

Одним из величайших достижений физики за последние два тысячелетия стало выделение и определение четырех видов взаимодействия, которые правят вселенной. Все они могут быть описаны на языке полей, которым мы обязаны Фарадею. К несчастью, однако, ни один из четырех видов не обладает в полной мере свойствами силовых полей, описанных в боль­шинстве фантастических произведений. Перечислим эти виды взаимодействия.

1. Гравитация. Безмолвная сила, не позволяющая нашим ногам оторваться от опоры. Она не дает рассы­паться Земле и звездам, помогает сохранить целост­ность Солнечной системы и Галактики. Без гравитации вращение планеты вышвырнуло бы нас с Земли в космос со скоростью 1000 миль в час. Проблема в том, что свойства гравитации в точности противо­положны свойствам фантастических силовых полей. Гравитация - сила притяжения, а не отталкивания; она чрезвычайно слаба - относительно, разумеется; она работает на громадных, астрономических расстоя­ниях. Другими словами, являет собой почти полную противоположность плоскому, тонкому, непроницае­мому барьеру, который можно встретить едва ли не в любом фантастическом романе или фильме. К приме­ру, перышко к полу притягивает целая планета - Зем­ля, но мы легко можем преодолеть притяжение Земли и поднять перышко одним пальцем. Воздействие одного нашего пальца способно преодолеть силу притяжения целой планеты, которая весит больше шести триллио­нов килограммов.

2. Электромагнетизм (ЭМ). Сила, освещающая наши города. Лазеры, радио, телевидение, современная электроника, компьютеры, Интернет, электричество, магнетизм - все это следствия проявления электро­магнитного взаимодействия. Возможно, это самая по­лезная сила, которую удалось обуздать человечеству на протяжении всей его истории. В отличие от гравитации она может работать и на притяжение, и на отталкива­ние. Однако и она не годится на роль силового поля по нескольким причинам. Во-первых, ее можно легко нейтрализовать. К примеру, пластик или любой другой непроводящий материал без труда проникнет в мощ­ное электрическое или магнитное поле. Кусок пласти­ка, брошенный в магнитное поле, свободно пролетит его насквозь. Во-вторых, электромагнетизм действует на больших расстояниях, его непросто сосредоточить в плоскости. Законы ЭМ-взаимодействия описываются уравнениями Джеймса Клерка Максвелла, и похоже, силовые поля не являются решением этих уравнений.

3 и 4. Сильные и слабые ядерные взаимодействия. Слабое взаимодействие - это сила радиоактивно­го распада, та, что разогревает радиоактивное ядро Земли. Эта сила стоит за извержениями вулканов, зем­летрясениями и дрейфом континентальных плит. Силь­ное взаимодействие не дает рассыпаться ядрам атомов; оно обеспечивает энергией солнце и звезды и отвечает за освещение Вселенной. Проблема в том, что ядерное взаимодействие работает только на очень маленьких расстояниях, в основном в пределах атомного ядра. Оно так прочно связано со свойствами самого ядра, что управлять им чрезвычайно трудно. В настоящее время нам известно только два способа влиять на это взаимо­действие: мы можем разбить субатомную частицу на части в ускорителе или взорвать атомную бомбу.

Хотя защитные поля в научной фантастике и не подчиня­ются известным законам физики, все же существуют лазейки, которые в будущем, вероятно, сделают создание силового поля возможным. Во-первых, существует, возможно, пятый вид фун­даментального взаимодействия, который никому до сих пор не удалось увидеть в лаборатории. Может оказаться, к примеру, что это взаимодействие работает только на расстояниях от не­скольких дюймов до фута - а не на астрономических расстоя­ниях. (Правда, первые попытки обнаружить пятый вид взаимо­действия дали отрицательные результаты.)

Во-вторых, нам, возможно, удастся заставить плазму ими­тировать некоторые свойства силового поля. Плазма - это «четвертое состояние вещества». Три первые, привычные нам состояния вещества, - твердое, жидкое и газообразное; тем не менее самой распространенной формой вещества во вселенной является плазма: газ, состоящий из ионизированных атомов. Атомы в плазме не связаны между собой и лишены электро­нов, а потому обладают электрическим зарядом. Ими можно без труда управлять при помощи электрического и магнитного полей.

Видимое вещество вселенной существует по большей ча­сти в форме различного рода плазмы; из нее образованы солн­це, звезды и межзвездный газ. В обычной жизни мы почти не сталкиваемся с плазмой, потому что на Земле это явление редкое; тем не менее плазму можно увидеть. Для этого доста­точно взглянуть на молнию, солнце или экран плазменного телевизора.

Известны четыре основных физических взаимодействия, которые определяют структуру нашего мира: сильные, слабые, электромаг­нитные и гравитационные.

1. Сильные взаимодействия происходят на уровне атомных ядер и представляют собой взаимное притяжение их взаимных частей. Действуют на расстояниях примерно 10 -13 см. Одно из проявлений сильных взаимодействий - ядерные си­лы . Сильные, взаимодействия открыты Э. Резерфордом в 1911 году одновременно с открытием атомного ядра. Переносчиками сильных взаимодействий являются глюоны . Ядерные силы не зависят от заряда частиц. В сильных взаимодействиях ве­личина заряда сохраняется.

2. Электромагнитное взаимодействие в 100-1000 раз слабее
сильного взаимодействия, но более дальнодействующее. Свойственно электрически заряженным частицам. Носителем электромагнитного взаимодействия является не имеющий заряда фотон – квант электромагнитного поля. В процессе электромагнитного взаимодействия электроны и атомные ядра соединяются в атомы, атомы – в молекулы. Электромагнитное взаимодействие связано с электрическими и магнит­ными полями. Электрическое поле возникает при наличии электрических за­рядов, а магнитное поле - при их движении. Различные агрегатные состояния вещества, явление трения, упругие и другие свойства вещества определяются преиму­щественно силами межмолекулярного взаимодействия, которое по своей природе является электромагнитным. Электромагнитное взаимодействие описывается фундаментальными законами электростатики и электродина­мики: законом Кулона, законом Ампера и др. Его наиболее общее описание дает электромагнитная теория Максвелла, основанная на фундаментальных уравнениях, связывающих электрическое и магнитное поля.

3. Слабые взаимодействия слабее электромагнитного. Радиус его действия 10 -15 - 10 -22 см. Слабое взаимодействие связано с распадом частиц, например, с происходящими в ядре превращениями протона в нейтрон, позитрон и нейтри­но. Испускаемое нейтрино обладает огромной проницающей спо­собностью - оно проходит через железную плиту толщиной милли­ард километров. При слабых взаимодействиях меняется заряд частиц. Слабое взаимодействие представляет собой не контактное взаимодействие, а осуществляется путем обмена промежуточны­ми тяжелыми частицами - бозонами .

4. Гравитационное взаимодействие характерно для всех материальных объ­ектов вне зависимости от их природы. Оно заключается во взаимном притя­жении тел и определяется фундаментальным законом всемирного тяготения: между двумя точечными телами действует сила притяжения, прямо пропор­циональная произведению их масс и обратно пропорциональная квадрату расстояния между ними. Гравитационным взаимодействием определяется падение тел в поле сил тяготения Земли. Законом всемирного тяготения опи­сывается, например, движение планет Солнечной системы и различных мак­рообъектов. Предполагается, что гравитационное взаимодействие обуслов­ливается некими элементарными частицами - гравитонами , существование которых к настоящему времени экспериментально не подтверждено.


Гравитационное взаимодействие во много раз слабее электромагнитного. Оно не учитывается в теории элементарных частиц, поскольку на характерных для них расстояниях порядка 10 -13 см дает чрезвычайно малые эффекты. Однако на ультрамалых расстояниях (10-33 см) и при ультрабольших энергиях гравитация вновь приобретает существенное значение. Сверхтяжелые виртуальные частицы создают вокруг себя заметное гравитационное поле, которое искажает геометрию пространства. В космических масштабах гравитационное взаимодействие имеет решающее значение. Радиус его действия не ограничен.

От силы взаимодействия зависит время, в течение которого совершается превращение элементарных частиц. Ядерные ре­акции, связанные с сильными взаимодействиями, происходят в течение 10 -24 - 10 -23 с. Это приблизительно тот кратчайший интервал времени, за который частица, ускоренная до высоких энергий, до скорости, близкой скорости света, проходит через элементарную частицу размером порядка 10 -13 см. Изменения, обусловленные электромагнитными взаимодействиями, осуще­ствляются в течение 10-19 - 10 -21 с, а слабыми (например, рас­пад элементарных частиц) - в основном 10 -10 с.

Все четыре взаимодействия необходимы и достаточныдля построения разнообразного мира. Без сильных взаимодействий не существовали бы атомные ядра. Без электромагнитных взаимодействий не было бы ни ато­мов, ни молекул, ни макроскопических объектов, а также тепла и света. Без слабых взаимодействий не были бы возможны ядерные реакции в недрах Солнца и звезд, не происходили бы вспышки сверхновых звезд и необходимые для жизни тяжелые элементы не могли бы распространиться во Вселенной. Без гравитационного взаимодействия не только не было бы галактик, звезд, планет, но и вся Вселенная не могла бы эво­люционировать, поскольку гравитация является объединяющим фактором, обеспечивающим единство Вселенной как целого и ее эволюцию.

Современная физика пришла к выводу, что все четыре фун­даментальных взаимодействия, необходимые для создания из элементарных частиц сложного и разнообразного материаль­ного мира, можно получить из одного фундаментального взаи­модействия - суперсилы. Наиболее ярким достижением стало доказательство того, что при очень высоких температурах (или энергиях) все четыре взаимодействия объединяются в одно. При энергии в 100 ГэВ объеди­няются электромагнитное и слабое взаимодействия. Такая тем­пература соответствует температуре Вселенной через 10 -10 с после Большого взрыва. При энергии 10 15 ГэВ к ним присое­диняется сильное взаимодействие, а при энергии 10 19 ГэВ про­исходит объединение всех четырех взаимодействий.

Это предположение носит чисто теоретический характер, поскольку экспериментальным путем его проверить невозмож­но. Косвенно эти идеи подтверждаются астрофизическими данными, которые можно рассматривать как эксперименталь­ный материал, накопленный Вселенной.

Чтобы понять, стоит ли продолжать писать короткие этюды, объясняющие буквально на пальцах разные физические явления и процессы. Результат развеял мои сомнения. Продолжу. Но чтобы подойти к довольно сложным явлениям придется делать отдельные последовательные серии постов. Так, чтобы дойти до рассказа об устройстве и эволюции Солнца и других типов звезд придется начать с описания типов взаимодействия между элементарными частичами. С этого и начнем. Без формул.
Всего в физике известно четыре типа взаимодействия. Хорошо знакомые все гравитационное и электромагнитное . И почти неизвестные широкой публике сильное и слабое . Опишем их последовательно.
Гравитационное взаимодействие . Человек знаком с ним издревле. Ибо постоянно находится в поле тяжести Земли. А из школьной физики мы знаем, что сила гравитационного взаимодействия между телами пропорциональна произведению их масс и обратно пропорциональна квадрату расстояния между ними. Под воздействием гравитационной силы Луна вращается вокруг Земли, Земля и другие планеты - вокруг Солнца, а последнее вместе с другими звездами - вокруг центра нашей Галактики.
Довольно медленное убывание силы гравитационного взаимодействия с расстоянием (обратно пропорционально квадрату расстояния) заставляет физиков говорить об этом взаимодействии как о дальнодействующем . Кроме того, действующие между телами силы гравитационного взаимодействия являются только силами притяжения.
Электромагнитное взаимодействие . В самом простейшем случае электростатического взаимодействия, как мы знаем из школьной физики, сила притяжения или отталкивания между электрически заряженными частицами пропорциональна произведению их электрических зарядов и обратно пропорциональна квадрату расстояния между ними. Что очень похоже на закон гравитационного взаимодействия. Отличие лишь в том, что электрические заряды с одинаковыми знаками отталкиваются, а с разными - притягиваются. Поэтому электромагнитное взаимодействие, как и гравитационное, физики называют дальнодействующим .
В то же время электромагнитное взаимодействие сложнее гравитационного. Из школьной физики мы знаем, что электрическое поле создается электрическими зарядами, магнитных зарядов в природе не существует, а магнитное поле создается электрическими токами.
На самом деле электрическое поле может создаваться еще и изменяющимся во времени магнитным полем, а магнитное поле - изменяющимся во времени электрическим полем. Последнее обстоятельство дает возможность существовать электромагнитному полю вообще без электрических зарядов и токов. И эта возможность реализуется в виде электромагнитных волн. Например, радиоволн и квантов света.
Из-за одинаковой зависимости от расстояния электрических и гравитационных сил естественно попытаться сравнить их интенсивности. Так, для двух протонов силы гравитационного притяжения оказываются в 10 в 36-й степени раз (миллиард миллиардов миллиардов миллиардов раз) слабее сил электростатического отталкивания. Поэтому в физике микромира гравитационным взаимодействием вполне обоснованно можно пренебрегать.
Сильное взаимодействие . Это - близкодействующие силы. В том смысле, что они действуют на расстояниях только порядка одного фемтометра (одной триллионной части миллиметра), а на больших расстояниях их влияние практически не ощущаются. Более того, на расстояниях порядка одного фемтометра сильное взаимодействие примерно в сотню раз интенсивнее электромагнитного.
Именно поэтому одинаково электрически заряженные протоны в атомном ядре не отталкиваются друг от друга электростатическими силами, а удерживаются вместе сильным взаимодействием. Поскольку размеры протона и нейтрона составляют около одного фемтометра.
Слабое взаимодействие . Оно действительно очень слабое. Во-первых, оно действует на расстояниях в тысячу раз меньших одного фемтометра. А на больших расстояниях практически не ощущается. Поэтому оно, как и сильное, принадлежит к классу близкодействующих . Во-вторых, его интенсивность примерно в сотню миллиардов раз меньше интенсивности электромагнитного взаимодействия. Слабое взаимодействие отвечает за некоторые распады элементарных частиц. В том числе - свободных нейтронов.
Существует лишь один тип частиц, которые взаимодействуют с веществом только через слабое взаимодействие. Это - нейтрино. Через каждый квадратный сантиметр нашей кожи ежесекундно проходит почти сотня миллиардов солнечных нейтрино. И мы их совершенно не замечаем. В том смысле, что за время нашей жизни вряд ли несколько штук нейтрино провзаимодействует с веществом нашего тела.
Говорить же о теориях, описывающих все эти типы взаимодействий не будем. Ибо для нас важна качественная картина мира, а не изыски теоретиков.

Способность к взаимодействию – важнейшее и неотьем-лемое свойство материи. Именно взаимодействия обеспечивают обьединение различных материальных обьектов мега-, макро– и микромира в системы. Все известные современной науке силы сводятся к четырем типам взаимодействий, которые называются фундаментальными: гравитационное, электромагнитное, слабое и сильное.

Гравитационное взаимодействие впервые стало обьек-том изучения физики в XVII в. Теория гравитации И. Ньютона, основу которой составляет закон всемирного тяготения, стала одной из составляющих классической механики. Закон всемирного тяготения гласит: между двумя телами существует сила притяжения, прямо пропорциональная произведению их масс и обратно пропорциональная квадрату расстояния между ними (2.3). Любая материальная частица является источником гравитационного воздействия и испытывает его на себе. По мере увеличения массы гравитационные взаимодействия возрастают, т. е. чем больше масса взаимодействующих веществ, тем сильнее действуют гравитационные силы. Силы гравитации – это силы притяжения. В последнее время физики высказывают предположение о существовании гравитационного отталкивания, которое действовало в самые первые мгновения существования Вселенной (4.2), однако эта идея пока не подтверждена. Гравитационное взаимодействие – наиболее слабое из ныне известных. Гравитационная сила действует на очень больших расстояниях, ее интенсивность с увеличением расстояния убывает, но не исчезает полностью. Считается, что переносчиком гравитационного взаимодействия является гипотетическая частица гравитон. В микромире гравитационное взаимодействие не играет существенной роли, однако в макро– и особенно мегапроцессах ему принадлежит ведущая роль.

Электромагнитное взаимодействие стало предметом изучения в физике XIX в. Первой единой теорией электромагнитного поля выступила концепция Дж. Максвелла (2.3). В отличие от гравитационной силы электромагнитные взаимодействия существуют только между заряженными частицами: электрическое поле – между двумя покоящимися заряженными частицами, магнитное – между двумя движущимися заряженными частицами. Электромагнитные силы могут быть как силами притяжения, так и силами отталкивания. Одноименно заряженные частицы отталкиваются, разноименно – притягиваются. Переносчиками этого типа взаимодействия являются фотоны. Электромагнитное взаимодействие проявляется в микро-, макро– и мегамире.

В середине XX в. была создана квантовая электродинамика – теория электромагнитного взаимодействия, которая удовлетворяла основным принципам квантовой теории и теории относительности. В 1965 г. ее авторы С. То-манага, Р. Фейнман и Дж. Швингер были удостоены Нобелевской премии. Квантовая электродинамика описывает взаимодействие заряженных частиц – электронов и позитронов.

Слабое взаимодействие было открыто только в XX в., в 1960-е гг. построена общая теория слабого взаимодействия. Слабое взаимодействие связано с распадом частиц, поэтому его открытие последовало только вслед за открытием радиоактивности. При наблюдении радиоактивного распада частиц обнаружились явления, которые, казалось бы, противоречили закону сохранения энергии. Дело в том, что в процессе распада часть энергии «исчезала». Физик В. Паули предположил, что в процессе радиоактивного распада вещества вместе с электроном выделяется частица, обладающая высокой проникающей способностью. Позже эта частица была названа «нейтрино». Оказалось, что в результате слабых взаимодействий нейтроны, входящие в состав атомного ядра, распадаются на три типа частиц: положительно заряженные протоны, отрицательно заряженные электроны и нейтральные нейтрино. Слабое взаимодействие значительно меньше электромагнитного, но больше гравитационного, и в отличие от них распространяется на небольших расстояниях – не более 10-22см. Именно поэтому долгое время слабое взаимодействие экспериментально не наблюдалось. Переносчиками слабого взаимодействия являются бозоны.

В 1970-е гг. была создана общая теория электромагнитного и слабого взаимодействия, получившая название теории электрослабого взаимодействия. Ее создатели С. Вайнберг, А. Салам и С. Глэшоу в 1979 г. получили Нобелевскую премию. Теория электрослабого взаимодействия рассматривает два типа фундаментальных взаимодействий как проявления единого, более глубокого. Так, на расстояниях более 10-17см преобладает электромагнитный аспект явлений, на меньших расстояниях в одинаковой степени важны и электромагнитный, и слабый аспекты. Создание рассматриваемой теории означало, что обьединенные в классической физике XIX в., в рамках теории Фарадея-Максвелла, электричество, магнетизм и свет в последней трети XX в. дополнились феноменом слабого взаимодействия.

Сильное взаимодействие также было открыто только в XX в. Оно удерживает протоны в ядре атома, не позволяя им разлететься под действием электромагнитных сил отталкивания. Сильное взаимодействие осуществляется на расстояниях не более чем 10-13см и отвечает за устойчивость ядер. Ядра элементов, находящихся в конце таблицы Менделеева, неустойчивы, поскольку их радиус велик и, соответственно, сильное взаимодействие теряет свою интенсивность. Такие ядра подвержены распаду, который и называется радиоактивным. Сильное взаимодействие ответственно за образование атомных ядер, в нем участвуют только тяжелые частицы: протоны и нейтроны. Ядерные взаимодействия не зависят от заряда частиц, переносчиками этого типа взаимодействий являются глюоны. Глюоны обьединены в глюонное поле (по аналогии с электромагнитным), благодаря которому и осуществляется сильное взаимодействие. По своей мощи сильное взаимодействие превосходит другие известные и является источником огромной энергии. Примером сильного взаимодействия выступают термоядерные реакции на Солнце и других звездах. Принцип сильного взаимодействия использован при создании водородного оружия.

Теорию сильного взаимодействия называют квантовой хромодинамикой. Согласно этой теории сильное взаимодействие есть результат обмена глюонами, в результате чего обеспечивается связь кварков в адронах. Квантовая хромо-динамика продолжает развиваться, и хотя ее нельзя пока считать законченной концепцией сильного взаимодействия, тем не менее эта физическая теория имеет прочную экспериментальную базу.

В современной физике продолжаются поиски единой теории, которая позволила бы объяснить все четыре типа фундаментальных взаимодействий. Создание подобной теории означало бы также построение единой концепции элементарных частиц. Этот проект получил название «Великое объединение». Основанием для убежденности, что такая теория возможна, является то обстоятельство, что на малых расстояниях (менее 10-29см) и при большой энергии (более 1014ГэВ) электромагнитные, сильные и слабые взаимодействия описываются одинаковым образом, что означает общность их природы. Однако этот вывод имеет пока только теоретический характер, проверить его экспериментально до сих пор не удалось.

Различные конкурирующие между собой теории Великого объединения по-разному интерпретируют космологию (4.2). Например, предполагается, что в момент рождения нашей Вселенной существовали условия, в которых все четыре фундаментальных взаимодействия проявлялись одинаковым образом. Создание теории, объясняющей на единых основаниях все четыре типа взаимодействий, потребует синтеза теории кварков, квантовой хромодинамики, современной космологии и релятивистской астрономии.

Однако поиск единой теории четырех типов фундаментальных взаимодействий не означает, что невозможно появление иных трактовок материи: открытие новых взаимодействий, поиск новых элементарных частиц и т. п. Некоторые физики высказывают сомнение в возможности единой теории. Так, создатели синергетики И. Пригожин и И. Стен-герс в книге «Время, хаос, квант» пишут: «надежду на построение такой „теории всего“, из которой можно было бы вывести полное описание физической реальности, придется оставить», и обосновывают свой тезис закономерностями, сформулированными в рамках синергетики (7.2).

Важную роль в понимании механизмов взаимодействия элементарных частиц, их образования и распада сыграли законы сохранения. Помимо законов сохранения, действующих в макромире (закона сохранения энергии, закона сохранения импульса и закона сохранения момента импульса), в физике микромира были обнаружены новые: закон сохранения барионного, лептонного зарядов, странности и др.

Каждый закон сохранения связан с какой-либо симметрией в окружающем мире. В физике под симметрией понимается инвариантность, неизменность системы относительно ее преобразований, т. е. относительно изменений ряда физических условий. Немецким математиком Эммой Нетер была установлена связь между свойствами пространства и времени и законами сохранения классической физики. фундаментальная теорема математической физики, называемая теоремой Нетер, гласит, что из однородности пространства следует закон сохранения импульса, из однородности времени – закон сохранения энергии, а из изотропности пространства – закон сохранения момента импульса. Эти законы носят фундаментальный характер и справедливы для всех уровней существования материи.

Закон сохранения и превращения энергии утверждает, что энергия не исчезает и не появляется вновь, а лишь переходит из одной формы в другую. Закон сохранения импульса постулирует неизменность импульса замкнутой системы с течением времени. Закон сохранения момента импульса утверждает, что момент импульса замкнутой системы остается неизменным с течением времени. Законы сохранения являются следствием симметрии, т. е. инвариантности, неизменности структуры материальных обьектов относительно преобразований, или изменения физических условий их существования.

  • Физика
    • Перевод

    Автор статьи – Дон Линкольн, старший учёный в лаборатории при БАК Fermilab, работающей под эгидой энергетического департамента США. Недавно написал книгу "Большой адронный коллайдер: необычная история бозона Хиггса и другие вещи, которые вас поразят ".

    У науки с интернетом сложные взаимоотношения: наука движется вперёд путём осторожной и тщательной оценки данных и теории, и этот процесс может идти годами. А в интернете способность аудитории к концентрации напоминает диснеевскую рыбку Дори из мультика «В поисках Немо» (А теперь и «В поисках Дори») – тут мем, здесь фотка звезды… Ой, смотрите – смешной котик…

    Поэтому люди, интересующиеся серьёзной наукой, должны осторожно относиться к информации, выложенной в интернете, заявляющей о научном исследовании, кардинально меняющем парадигму науки. Недавний пример – статья, в которой утверждается о возможном открытии пятого фундаментального взаимодействия. Если бы это было так, нам бы пришлось переписывать учебники.

    Как физик, я хочу пролить дисциплинированный научный свет на это заявление.

    Пятое взаимодействие

    Так что же заявляется?

    В статье , отправленной 7 апреля 2015 года на сайт arXiv, группа венгерских исследователей описала изучение поведения интенсивного пучка протонов на тонких литиевых мишенях. Обнаруженные столкновения создавали возбуждённые ядра бериллия-8, распадавшегося на обычный беррилий-8 и пары электрон-позитрон.

    Они заявили, что полученные ими данные нельзя объяснить известными физическими явлениями в Стандартной модели, заправляющей современной физикой частиц. Но объяснение этих данных было возможно при существовании неизвестной доселе частицы массой в 17 миллионов эВ, что в 32,7 раз тяжелее электрона, или составляет 2% от массы протона. Частицы, появляющиеся при таких энергиях, довольно низких по современным меркам, хорошо изучены. И было бы весьма неожиданно, если бы там была обнаружена новая.

    Однако измерения перенесли экспертную оценку и были опубликованы 26 января 2016 года в журнале Physical Review Letters , одном из самых престижных журналов по физике мира. В этой публикации исследователи и их исследование преодолели впечатляющее препятствие.

    Это измерение мало кто замечал до тех пор, пока на него не обратила внимание группа физиков-теоретиков из Калифорнийского университета в Ирвине (UCI). И как обычно поступают теоретики со спорными физическими измерениями, команда сравнила их с имеющимися работами, собранными за последнюю сотню лет, чтобы увидеть, соответствуют ли новые данные с уже собранной информацией. В этом случае они вели сравнение с десятком опубликованных исследований.

    Они обнаружили, что хотя измерения и не конфликтуют с предыдущими исследованиями, в них наблюдается нечто, чего раньше не встречалось – и нечто, чего нельзя объяснить Стандартной моделью.

    Новая теоретическая платформа

    Чтобы разобраться в венгерских измерениях, эта группа теоретиков из UCI придумала новую теорию.

    Теория эта весьма экзотична. Они начали с разумного предположения, что новая возможная частица не объясняется существующей теорией. Это имеет смысл, поскольку у возможной новой частицы малая масса, и если бы она описывалась известными законами физики, её бы нашли раньше. Если эта частица подчиняется новым законам физики, возможно, присутствует и новое взаимодействие. Поскольку традиционно физики говорят о четырёх известных фундаментальных взаимодействиях (гравитация, электромагнетизм, сильное и слабое), это новое гипотетическое взаимодействие назвали «пятым».

    История теорий и открытий пятого взаимодействия довольно разнообразна, она насчитывает несколько десятилетий, и в её рамках новые измерения и идеи возникали, чтобы потом исчезнуть. С другой стороны, существуют загадки, не объясняемые обычной физикой – например, тёмная материя. Хотя тёмную материю всегда моделировали как единственную форму стабильной массивной частицы, испытывающей гравитацию и ни одну из других известных сил, нет причин, по которым тёмная материя не участвовала бы в таких взаимодействиях, в которых не принимает участие обычная. Ведь обычная материя участвует во взаимодействиях, в которых не участвует тёмная – так что тут нет ничего глупого.

    Есть много идей о взаимодействиях, влияющих только на тёмную материю, и все они в общем называются "сложная тёмная материя ". Одна из известных идей говорит о существовании тёмного фотона, взаимодействующего с тёмным зарядом, переносимым только тёмной материей. Эта частица – тёмный аналог фотона обычной материи, взаимодействующего с известным нам электрическим зарядом, но с одним исключением: некоторые теории сложной тёмной материи наделяют тёмные фотоны массой, в отличие от обычных фотонов.

    Если тёмные фотоны существуют, они могут связываться с обычной материей (и обычными фотонами) и распадаться на электрон-позитронные пары, которые и исследовала группа венгерских учёных. Поскольку тёмные фотоны не взаимодействуют с обычным электрическим зарядом, эта связь может возникнуть лишь благодаря причудам квантовой механики. Но если учёные начали наблюдать увеличение электрон-позитронных пар, это может означать, что они наблюдают тёмные фотоны.

    Ирвинская группа нашла модель, включающую «протофобную» частицу, не исключаемую ранними измерениями, способную объяснить венгерский результат. «Протофобные», то есть «избегающие протонов» частицы, редко или почти никогда не взаимодействуют с протонами, но могут взаимодействовать с нейтронами (нейтрофильные).

    Частица, предложенная ирвинской группой, участвует в пятом, неизвестном взаимодействии, проявляющемся на расстоянии в 12 фемтометров, или в 12 раз большем, чем размер протона. Частица протофобная и нейтрофильная. Масса частицы составляет 17 миллионов эВ и может распадаться на электрон-позитронные пары. В дополнение к объяснению венгерского эксперимента, такая частица могла бы объяснить и некоторые несоответствия, обнаруженные в других экспериментах. Последнее добавляет немного веса этой идее.

    Взаимодействие, меняющее парадигму?

    Вот так оно есть.

    Что может оказаться правдой? Данные – это главное. Потребуются другие эксперименты, чтобы подтвердить или опровергнуть изменения. Всё остальное неважно. Но на это потребуется около года, и было бы неплохо придумать какую-нибудь идею за это время. Лучший способ оценки вероятности того, что открытие окажется настоящим, это изучение репутации исследователей, участвовавших в эксперименте. Это, конечно, вульгарный способ заниматься наукой, но он может приглушить ваши ожидания.

    Начнём с ирвинской группы. Многие из них (особенно руководители) имеют хорошую репутацию и являются устоявшимися экспертами в области, и у них в резюме есть хорошие работы. Возраст группы разный, есть и пожилые, и молодые участники. Некоторых из них я знаю лично, двое из них читали теоретические части в главах книги, которую я написал, чтобы удостовериться в том, что я не наговорил там глупостей (Кстати, ошибок они не нашли, но помогли прояснить некоторые моменты). Это объясняет моё уважение к членам ирвинской группы, хотя, возможно, и делает меня предвзятым. Я практически уверен в том, что их работа по сравнению новой модели с существующими данными была тщательной и профессиональной. Они обнаружили небольшой и неисследованный регион возможных теорий.

    С другой стороны, сама теория довольно умозрительная и маловероятная. Это не приговор – так можно сказать про все теории. Ведь Стандартная модель, управляющая физикой частиц, известна уже 50 лет и хорошо изучена. Кроме того, все новые теории умозрительные и маловероятные, и большинство из них неверны. Это тоже не приговор. Есть много способов добавить исправления к существующим теориям, чтобы объяснить новые явления. И все не могут быть верны. А иногда ни одна из предлагаемых теорий не оказывается верной.

    Однако, можно заключить, исходя из репутации членов группы, что они придумали новую идею и сравнили её со всеми имеющими к ней отношение данными. То, что они опубликовали свою модель, означает, что она прошла их тесты, и осталась правдоподобной, пусть и маловероятной, возможностью.

    Что насчёт венгерской группы? Никого из них я не знаю лично, но статью напечатали в Physical Review Letters – это уже идёт им в плюс. Однако эта группа публиковала две предыдущих работы, в которых наблюдались схожие аномалии, включая возможную частицу массой в 12 миллионов эВ, и частицу массой в 14 миллионов эВ . Обе работы были опровергнуты другими экспериментами.

    Далее, венгерская группа так и не объяснила, что послужило причинами ошибок в опровергнутых работах. Ещё один звоночек – то, что группа редко публикует данные, не содержащие аномалий. Это маловероятно. В моей исследовательской карьере большинство публикаций подтверждали существующие теории. Повторяющиеся аномалии очень редки.

    Так что в итоге? Надо ли радоваться новому возможному открытию? Ну, конечно, возможные открытия – это всегда интересно. Стандартная модель выдерживала проверки 50 лет, но есть и необъяснённые загадки, и научное сообщество всегда ищет открытия, указывающие на новые и недоказанные теории. Но каковы шансы, что это измерение и теория приведут к тому, что научное сообщество примет существование пятого взаимодействия с радиусом действия в 12 фм и частицу, остерегающуюся протонов? Мне кажется, шансов мало. Я не отношусь к идее оптимистически.

    Конечно, мнение – это всего лишь мнение, пусть и информирование. Другие эксперименты также будут искать тёмные фотоны, поскольку даже если венгерские измерения не пройдут проверки, проблема тёмной материи будет существовать. Многие эксперименты в поисках тёмных фотонов будут изучать то же пространство параметров (энергию, массу и режимы распада), в которых, по заявлению венгерских исследователей, и найдена аномалия. Скоро, в течение года, мы узнаем, была ли эта аномалия открытием или же ещё одним глюком, временно взбудораживших сообщество, чтобы затем быть отброшенным после получения более аккуратных данных. Но неважно, чем это закончится – всё равно результатом этого будет улучшенная наука.

    Теги:

    • пятое взаимодействие
    • fifth force
    • квантовая физика
    • стандартная модель
    Добавить метки