Динамический диапазон в цифровой фотографии.

© 2014 сайт

Или фотографическая широта фотоматериала – это отношение между максимальным и минимальным значениями экспозиции , которые могут быть корректно запечатлены на снимке. Применительно к цифровой фотографии, динамический диапазон фактически эквивалентен отношению максимального и минимального возможных значений полезного электрического сигнала, генерируемого фотосенсором в ходе экспонирования.

Динамический диапазон измеряется в ступенях экспозиции (). Каждая ступень соответствует удвоению количества света. Так, например, если некая камера имеет динамический диапазон в 8 EV, то это означает, что максимальное возможное значение полезного сигнала её матрицы относится к минимальному как 2 8:1, а значит, камера способна запечатлеть в пределах одного кадра объекты, отличающиеся по яркости не более чем в 256 раз. Точнее, запечатлеть-то она может объекты с любой яркостью, однако объекты, чья яркость будет превышать максимальное допустимое значение выйдут на снимке ослепительно белыми, а объекты, чья яркость окажется ниже минимального значения, – угольно чёрными. Детали и фактура будут различимы лишь на тех объектах, яркость которых укладывается в динамический диапазон камеры.

Для описания отношения между яркостью самого светлого и самого тёмного из снимаемых объектов часто используется не вполне корректный термин «динамический диапазон сцены». Правильнее будет говорить о диапазоне яркости или об уровне контраста, поскольку динамический диапазон – это обычно характеристика измеряющего устройства (в данном случае, матрицы цифрового фотоаппарата).

К сожалению, диапазон яркости многих красивых сцен, с которыми мы сталкиваемся в реальной жизни, может ощутимо превышать динамический диапазон цифровой фотокамеры. В таких случаях фотограф бывает вынужден решать, какие объекты должны быть проработаны во всех деталях, а какие можно оставить за пределами динамического диапазона без ущерба для творческого замысла. Для того чтобы максимально эффективно использовать динамический диапазон вашей камеры, от вас порой может потребоваться не столько доскональное понимание принципа работы фотосенсора, сколько развитое художественное чутьё.

Факторы, ограничивающие динамический диапазон

Нижняя граница динамического диапазона задана уровнем собственного шума фотосенсора. Даже неосвещённая матрица генерирует фоновый электрический сигнал, называемый темновым шумом. Также помехи возникают при переносе заряда в аналого-цифровой преобразователь, да и сам АЦП вносит в оцифровываемый сигнал определённую погрешность – т.н. шум дискретизации.

Если сделать снимок в полной темноте или с крышкой на объективе, то камера запишет только этот бессмысленный шум. Если позволить минимальному количеству света попасть на сенсор, фотодиоды начнут накапливать электрический заряд. Величина заряда, а значит, и интенсивность полезного сигнала, будет пропорциональна числу пойманных фотонов. Чтобы на снимке проступили хоть сколько-нибудь осмысленные детали, необходимо, чтобы уровень полезного сигнала превысил уровень фонового шума.

Таким образом, нижнюю границу динамического диапазона или, иначе говоря, порог чувствительности сенсора формально можно определить как уровень выходного сигнала, при котором отношение сигнал/шум больше единицы.

Верхняя граница динамического диапазона определяется ёмкостью отдельного фотодиода. Если во время экспозиции какой-либо фотодиод накопит электрический заряд предельной для себя величины, то соответствующий перегруженному фотодиоду пиксель изображения получится абсолютно белым, и дальнейшее облучение уже никак не повлияет на его яркость. Это явление называют клиппингом. Чем выше перегрузочная способность фотодиода, тем больший сигнал способен он дать на выходе, прежде чем достигнет насыщения.

Для большей наглядности обратимся к характеристической кривой, которая представляет собой график зависимости выходного сигнала от экспозиции. На горизонтальной оси отложен двоичный логарифм облучения, получаемого сенсором, а на вертикальной – двоичный логарифм величины электрического сигнала, генерируемого сенсором в ответ на это облучение. Мой рисунок в значительной степени условен и преследует исключительно иллюстративные цели. Характеристическая кривая настоящего фотосенсора имеет несколько более сложную форму, да и уровень шума редко бывает столь высок.

На графике хорошо видны две критические переломные точки: в первой из них уровень полезного сигнала пересекает шумовой порог, а во второй – фотодиоды достигают насыщения. Значения экспозиции, лежащие между этими двумя точками, и составляют динамический диапазон. В данном абстрактном примере он равен, как несложно заметить, 5 EV, т.е. камера способна переварить пять удвоений экспозиции, что равнозначно 32-кратной (2 5 =32) разнице в яркости.

Зоны экспозиции, составляющие динамический диапазон неравноценны. Верхние зоны отличаются более высоким отношением сигнал/шум, и потому выглядят чище и детальнее, чем нижние. Вследствие этого верхняя граница динамического диапазона весьма вещественна и ощутима – клиппинг обрубает света при малейшей передержке, в то время как нижняя граница неприметным образом тонет в шумах, и переход к чёрному цвету далеко не так резок, как к белому.

Линейная зависимость сигнала от экспозиции, а также резкий выход на плато являются уникальными чертами именно цифрового фотографического процесса. Для сравнения взгляните на условную характеристическую кривую традиционной фотоплёнки.

Форма кривой и особенно угол наклона сильно зависят от типа плёнки и от процедуры её проявления, но неизменным остаётся главное, бросающееся в глаза отличие плёночного графика от цифрового – нелинейный характер зависимости оптической плотности плёнки от величины экспозиции.

Нижняя граница фотографической широты негативной плёнки определяется плотностью вуали, а верхняя – максимальной достижимой оптической плотностью фотослоя; у обращаемых плёнок – наоборот. Как в тенях, так и в светах наблюдаются плавные изгибы характеристической кривой, указывающие на падение контраста при приближении к границам динамического диапазона, ведь угол наклона кривой пропорционален контрастности изображения. Таким образом, зоны экспозиции, лежащие на средней части графика, обладают максимальным контрастом, в то время как в светах и тенях контраст снижен. На практике разница между плёнкой и цифровой матрицей особенно хорошо заметна в светах: там, где в цифровом изображении света выжжены клиппингом, на плёнке детали всё ещё различимы, хоть и малоконтрастны, а переход к чисто белому цвету выглядит плавным и естественным.

В сенситометрии используются даже два самостоятельных термина: собственно фотографическая широта , ограниченная сравнительно линейным участком характеристической кривой, и полезная фотографическая широта , включающая помимо линейного участка также основание и плечо графика.

Примечательно, что при обработке цифровых фотографий, к ним, как правило, применяется более или менее выраженная S-образная кривая , повышающая контраст в полутонах ценой его снижения в тенях и светах, что придаёт цифровому изображению более естественный и приятный глазу вид.

Разрядность

В отличие от матрицы цифрового фотоаппарата человеческому зрению свойственен, скажем так, логарифмический взгляд на мир. Последовательные удвоения количества света воспринимаются нами как равные изменения яркости. Световые числа можно даже сравнить с музыкальными октавами, ведь двукратные изменения частоты звука воспринимаются на слух как единый музыкальный интервал. По такому принципу работают и другие органы чувств. Нелинейность восприятия очень сильно расширяет диапазон чувствительности человека к раздражителям различной интенсивности.

При конвертировании RAW-файла (не важно – средствами камеры или в RAW-конвертере), содержащего линейные данные, к нему автоматически применяется т.н. гамма-кривая, которая призвана нелинейно повысить яркость цифрового изображения, приводя её в соответствие с особенностями человеческого зрения.

При линейной конверсии изображение получается слишком тёмным.

После гамма-коррекции яркость приходит в норму.

Гамма-кривая как бы растягивает тёмные тона и сжимает светлые, делая распределение градаций более равномерным. В результате изображение приобретает естественный вид, но шум и артефакты дискретизации в тенях неизбежно становятся более заметными, что только усугубляется малым числом уровней яркости в нижних зонах.

Линейное распределение градаций яркости.
Равномерное распределение после применения гамма-кривой.

ISO и динамический диапазон

Несмотря на то, что в цифровой фотографии используется та же концепция светочувствительности фотоматериала, что и в фотографии плёночной, следует понимать, что происходит это исключительно в силу традиции, поскольку подходы к изменению светочувствительности в цифровой и плёночной фотографии различаются принципиально.

Повышение чувствительности ISO в традиционной фотографии означает замену одной плёнки на другую с более крупным зерном, т.е. происходит объективное изменение свойств самого фотоматериала. В цифровой камере светочувствительность сенсора жёстко задана его физическими характеристиками и не может быть изменена в буквальном смысле. При повышении ISO камера изменяет не реальную чувствительность сенсора, а всего лишь усиливает электрический сигнал, генерируемого сенсором в ответ на облучение и соответствующим образом корректирует алгоритм оцифровки этого сигнала.

Важным следствием этого является снижение эффективного динамического диапазона пропорционально повышению ISO, ведь вместе с полезным сигналом усиливается и шум. Если при ISO 100 оцифровывается весь диапазон значений сигнала – от нуля и до точки насыщения, то при ISO 200 уже только половина ёмкости фотодиодов принимается за максимум. С каждым удвоением чувствительности ISO верхняя ступень динамического диапазона как бы отсекается, а оставшиеся ступени, подтягиваются на её место. Именно поэтому использование сверхвысоких значений ISO лишено практического смысла. С тем же успехом можно осветлить фотографию в RAW-конвертере и получить сопоставимый уровень шумов. Разница между повышением ISO и искусственным осветлением снимка заключается в том, что при повышении ISO усиление сигнала происходит до поступления его в АЦП, а значит, шум квантования не усиливается, в отличие от собственных шумов сенсора, в то время как в RAW-конвертере усилению подлежат в том числе и ошибки АЦП. Кроме того, уменьшение диапазона оцифровки означает более точную дискретизацию оставшихся значений входного сигнала.

Кстати, доступное на некоторых аппаратах понижение ISO ниже базового значения (например, до ISO 50), отнюдь не расширяет динамический диапазон, а просто ослабляет сигнал вдвое, что равноценно затемнению снимка в RAW-конвертере. Эту функцию можно даже рассматривать как вредную, поскольку использование субминимального значения ISO, провоцирует камеру на увеличение экспозиции, что при оставшемся неизменным пороге насыщения сенсора повышает риск получить клиппинг в светах.

Истинная величина динамического диапазона

Существует ряд программ вроде (DxO Analyzer, Imatest, RawDigger и пр.) позволяющих измерить динамический диапазон цифрового фотоаппарата в домашних условиях. В принципе, в этом нет большой необходимости, поскольку данные для большинства камер можно свободно найти в интернете, например, на сайте DxOMark.com .

Стоит ли верить результатам подобных испытаний? Вполне . С той лишь оговоркой, что все эти тесты определяют эффективный или, если можно так выразиться, технический динамический диапазон, т.е. отношение между уровнем насыщения и уровнем шума матрицы. Для фотографа же в первую очередь важен полезный динамический диапазон, т.е. количество зон экспозиции, которые действительно позволяют запечатлеть какую-то полезную информацию.

Как вы помните, порог динамического диапазона задан уровнем шумов фотосенсора. Проблема в том, что на практике нижние зоны, формально уже входящие в динамический диапазон, содержат всё ещё слишком много шума, чтобы их можно было с толком использовать. Здесь многое зависит от индивидуальной брезгливости – приемлемый уровень шума каждый определяет для себя сам.

Моё субъективное мнение таково, что детали в тенях начинают выглядеть более-менее прилично при отношении сигнал/шум не меньше восьми. На этом основании я определяю для себя полезный динамический диапазон, как технический динамический диапазон минус примерно три ступени.

К примеру, если зеркальная камера согласно результатам достоверных тестов обладает динамическим диапазоном в 13 EV, что очень неплохо по сегодняшним меркам, то её полезный динамический диапазон будет составлять около 10 EV, что, в общем-то, тоже весьма недурно. Разумеется, речь идёт о съёмке в RAW, с минимальным ISO и максимальной разрядностью. При съёмке в JPEG динамический диапазон сильно зависит от настроек контраста, но в среднем следует отбросить ещё две-три ступени.

Для сравнения: цветные обращаемые фотоплёнки обладают полезной фотографической широтой в 5-6 ступеней; чёрно-белые негативные плёнки дают 9-10 ступеней при стандартных процедурах проявления и печати, а при определённых манипуляциях – вплоть до 16-18 ступеней.

Подытоживая вышесказанное, попробуем сформулировать несколько простых правил, соблюдение которых поможет вам выжать из сенсора вашей камеры максимум производительности:

  • Динамический диапазон цифрового фотоаппарата в полной мере доступен только при съёмке в RAW.
  • Динамический диапазон уменьшается с ростом светочувствительности, а потому избегайте высоких значений ISO, если в них нет острой необходимости.
  • Использование более высокой разрядности для RAW-файлов не увеличивает истинный динамический диапазон, но улучшает тональное разделение в тенях за счёт большего количества уровней яркости.
  • Exposure to the right . Верхние зоны экспозиции всегда содержат максимум полезной информации при минимуме шумов и должны использоваться наиболее эффективно. При этом не стоит забывать и об опасности клиппинга – пиксели, достигшие насыщения, абсолютно бесполезны.

И главное: не стоит излишне переживать по поводу динамического диапазона вашей камеры. С динамическим диапазоном у неё всё в порядке. Ваше умение видеть свет и грамотно управлять экспозицией – намного важнее. Хороший фотограф не станет жаловаться на недостаток фотографической широты, а постарается дождаться более комфортного освещения, или изменит ракурс, или воспользуется вспышкой, словом, будет действовать в соответствии с обстоятельствами. Я вам скажу больше: некоторые сцены только выигрывают из-за того, что не укладываются в динамический диапазон камеры. Часто ненужное обилие деталей просто необходимо спрятать в полуабстрактный чёрный силуэт, делающий фотографию одновременно лаконичнее и богаче.

Высокий контраст это не всегда плохо – нужно лишь уметь с ним работать. Научитесь эксплуатировать недостатки оборудования так же, как и его достоинства, и вы удивитесь, насколько расширятся ваши творческие возможности.

Спасибо за внимание!

Василий А.

Post scriptum

Если статья оказалась для вас полезной и познавательной, вы можете любезно поддержать проект , внеся вклад в его развитие. Если же статья вам не понравилась, но у вас есть мысли о том, как сделать её лучше, ваша критика будет принята с не меньшей благодарностью.

Не забывайте о том, что данная статья является объектом авторского права. Перепечатка и цитирование допустимы при наличии действующей ссылки на первоисточник, причём используемый текст не должен ни коим образом искажаться или модифицироваться.

Этой статьёй мы начинаем серию публикаций о весьма интересном направлении в фотографии: High Dynamic Range (HDR) — фотографии с высоким динамическим диапазоном. Начнём, конечно же, с азов: разберёмся с тем, что такое HDR-изображения и как правильно их снимать, учитывая ограниченные возможности наших камер, мониторов, принтеров и т.д.

Давайте начнем с основного определения Динамического диапазона.

Динамический диапазон определяется отношением темных и ярких элементов, которые важны для восприятия вашей фотографии (измеряется уровнем яркости).

Это не абсолютный диапазон, так как он, во многом, зависит от ваших личных предпочтений и того, какого результата вы хотите добиться.

Например, есть множество замечательных фотографий с очень насыщенными тенями, без каких-либо деталей в них; в этом случае можно говорить о том, что на такой фотографии представлена только нижняя часть динамического диапазона сцены.

  • ДД снимаемой сцены
  • ДД фотокамеры
  • ДД устройства вывода изображения (монитор, принтер и т.д.)
  • ДД человеческого зрения

Во время фотосъёмки ДД трансформируется дважды:

  • ДД снимаемой сцены > ДД устройства захвата изображения (здесь мы подразумеваем под ним фотокамеру)
  • ДД устройства захвата изображения > ДД устройства вывода изображения (монитор, фотоотпечаток и т.д.)

Следует помнить, что любая деталь, которая будет потеряна на этапе захвата изображения – никогда не сможет быть восстановлена в последующем (это мы рассмотрим подробнее чуть позже). Но, в конце концов, важно лишь то, чтобы полученное изображение, отображаемое монитором, или распечатанное на бумаге радовало ваш взгляд.

Типы динамического диапазона

Динамический диапазон снимаемой сцены

Какие из самых ярких и самых темных деталей сцены вы хотели бы запечатлеть? Ответ на этот вопрос полностью зависит только от вашего творческого решения. Вероятно, лучший способ усвоить это – рассмотреть несколько кадров, в качестве образца.

Например, на фотографии выше, нам хотелось запечатлеть детали как внутри помещения, так и за его пределами.

На этой фотографии, мы также хотим показать детали и в светлых и в тёмных областях. Однако, в этом случае детали в светлых областях нам более важны, чем детали в тенях. Дело в том, что области светов, как правило, хуже всего смотрятся при фотопечати (зачастую, они могут выглядеть как простая белая бумага, на которой и распечатан снимок).

В подобных сценах динамический диапазон (контрастность) может достигать значения 1:30 000 и более – особенно, если вы снимаете в тёмной комнате с окнами, через которые проникает яркий свет.

В конечном счете, HDR-фотография в подобных условиях – оптимальный вариант для получения снимка, радующего ваш взор.

Динамический диапазон фотокамеры

Если бы наши камеры были способны запечатлеть высокий динамический диапазон сцены за 1 снимок, мы бы не нуждались в методах, описанных в этой и последующих статьях, посвященных HDR. К сожалению, суровая действительность такова, что динамический диапазон фотокамер значительно ниже, чем во многих сценах, для съёмки которых они используются.

Как определяется динамический диапазон фотокамеры?

ДД камеры измеряется от самых ярких деталей кадра до деталей теней, превышающих уровень шума.

Ключевым моментом в определении динамического диапазона камеры является то, что мы измеряем его от видимых деталей области светов (необязательно и не всегда чисто белых), до деталей теней, чётко различимых и не теряющихся среди большого количества шума.

  • Стандартная современная цифровая зеркальная камера может охватить диапазон в 7-10 стопов (в диапазоне от 1:128 до 1:1000). Но не стоит быть чересчур оптимистичным и доверять только цифрам. Некоторые фотографии, несмотря на присутствие внушительного количества шумов на них, в большом формате смотрятся великолепно, другие же – теряют свою привлекательность. Всё зависит от вашего восприятия. Ну и, конечно, размер печати или отображения вашего фото также имеет значение
  • Диапозитивная фотоплёнка способна охватить диапазон в 6-7 стопов
  • Динамический диапазон негативной плёнки составляет около 10-12 стопов
  • Функция восстановления светов в некоторых RAW-конвертерах может помочь получить дополнительно до +1 стопа.

За последнее время технологии, применяемые в зеркалках шагнули далеко вперёд, но ожидать чудес, всё же, не следует. На рынке можно отыскать не так много камер, способных захватить широкий (по сравнению с другими камерами) динамический диапазон. Ярким примером может служить Fuji FinePixS5 (в настоящее время не выпускается), матрица которой имела двухслойные фотоэлементы, что позволило увеличить ДД, доступный S5 на 2 стопа.

Динамический диапазон устройства вывода изображения

Из всех этапов цифровой фотографии, вывод изображения, как правило, демонстрирует самый низкий динамический диапазон.

  • Статический динамический диапазон современных мониторов варьируется в пределах от 1:300 до 1:1000
  • Динамический диапазон HDR-мониторов может доходить до 1:30000 (просмотр изображения на таком мониторе может вызвать ощутимый дискомфорт для глаз)
  • Динамический диапазон фотопечати большинства глянцевых журналов составляет около 1:200
  • Динамический диапазон фотоотпечатка на качественной матовой бумаге не превышает 1:100

У вас вполне резонно может возникнуть вопрос: зачем при съёмке стараться захватить большой динамический диапазон, если ДД устройств вывода изображения настолько ограничен? Ответ заключается в компрессии динамического диапазона (как вы узнаете далее, тональное отображение также связана с этим).

Важные аспекты человеческого зрения

Поскольку свои работы вы демонстрируете другим людям, вам будет небесполезным усвоить некоторые основные аспекты восприятия окружающего мира человеческим глазом.

Человеческое зрение работает не так, как наши фотокамеры. Все мы знаем, что наши глаза адаптируются к освещению: в темноте зрачки расширяются, а при ярком свете – сужаются. Обычно, этот процесс занимает достаточно продолжительное время (он вовсе не моментальный). Благодаря этому, без специальной подготовки, наши глаза могут охватить динамический диапазон в 10 стопов, а в целом нам доступен диапазон около 24 стопов.

Контраст

Все детали, доступные нашему зрению, базируются не на абсолютной насыщенности тона, а на основе контрастов контуров изображения. Человеческие глаза очень чувствительны даже к самым незначительным изменениям контрастности. Вот почему концепция контрастности столь важна.

Общий контраст

Общий контраст определяется перепадом яркости между самыми темными и самыми светлыми элементами изображения в целом. Такие инструменты, как Кривые (Curves) и Уровни (Levels) изменяют только общий контраст, поскольку все пиксели с одним уровнем яркости они обрабатывают одинаково.

В общем контрасте выделяют три основных области:

  • Средние тона
  • Света

Совокупность контрастов этих трёх областей определяет общий контраст. Это означает, что если вы увеличите контрастность средних тонов (что бывает очень часто), вы потеряете общий контраст в области светов/теней при любом способе вывода изображения, зависящего от общего контраста (например, при печати на глянцевой бумаге).

Средние тона, как правило, отображают основной предмет съёмки. Если уменьшить контрастность области средних тонов, то ваше изображение будет блеклым. И, наоборот, при увеличении контрастности средних тонов, тени и света станут менее контрастными. Как вы увидите чуть ниже, изменение локального контраста может улучшить общее отображение вашей фотографии.

Локальный Контраст

Следующий пример поможет понять концепцию локального контраста.

Круги, расположенные друг напротив друга, в каждой из строк имеют абсолютно идентичные уровни яркости. Но правый верхний круг выглядит намного ярче, чем тот, что слева. Почему? Наши глаза видят разницу между ним и окружающим его фоном. Правый выглядит ярче на тёмно-сером фоне, по сравнению с таким же кругом, размещённом на более светлом фоне. Для двух кругов же, расположенных ниже, верно обратное.

Для наших глаз абсолютная яркость представляет меньший интерес, чем её отношение к яркости близлежащих объектов.

Такие инструменты, как Заполняющий свет (FillLight) и Резкость (Sharpening) в Lightroom, и Тени/Света (Shadows/Highlights) в Photoshop действуют локально и не охватывают сразу все пиксели одинакового уровня яркости.

Dodge (Затемнить) и Burn (Осветлить) – классические инструменты для изменения локального контраста изображения. Dodge&Burn – это по-прежнему один из оптимальных методов улучшения изображения, потому, что наши собственные глаза, естественно, неплохо могут судить о том, как та или иная фотография будет выглядеть в глазах стороннего зрителя.

HDR: управление динамическим диапазоном

Еще раз вернёмся к вопросу: для чего же тратить усилия и снимать сцены с динамическим диапазоном шире, чем ДД вашей камеры или принтера? Ответ заключается в том, что мы можем сделать кадр с высоким динамическим диапазоном и позже вывести его изображение через устройство с меньшим ДД. В чём суть? А суть в том, что в ходе этого процесса вы не потеряете никакой информации о деталях изображения.

Конечно, проблему съёмки сцен с высоким динамическим диапазоном можно решить и другими путями:

  • Например, некоторые фотографы просто ждать пасмурную погоду, и не фотография вовсе, когда ДД сцены слишком высок
  • Использовать заполняющую вспышку (при пейзажной фотосъёмке этот способ неприменим)

Но во время длительного (или не очень) путешествия вы должны иметь максимум возможностей для фотосъёмки, так что нам с вами следует найти более эффективные решения.

К тому же окружающее освещение может зависеть не только от погоды. Для лучшего понимания этого, давайте вновь рассмотрим несколько примеров.

Фото выше весьма тёмное, но, несмотря на это, на нём запечатлён невероятно широкий динамический диапазон света (было снято 5 кадров с шагом в 2 стопа).

На этой фотографии свет, падающий из окон справа был весьма ярким, по сравнению с тёмным помещением (в нём не было источников искусственного освещения).

Так что ваша первая задача – запечатлеть на камеру полный динамический диапазон сцены, исключив потерю каких-либо данных.

Отображение динамического диапазона. Сцена с низким ДД

Давайте, по традиции, сначала посмотрим на схему фотосъёмки сцены с низким ДД:

В рассматриваемом случае при помощи камеры мы можем охватить динамический диапазон сцены за 1 кадр. Незначительные потери деталей в области теней, как правило, не являются существенной проблемой.

Процесс отображение на этапе: фотокамера – устройство вывода, в основном, осуществляется с помощью тональных кривых (обычно, сжимающих света и тени). Вот основные инструменты, которые для этого используются:

  • При конвертации RAW: отображение линейной тональности камеры через тональные кривые
  • Инструменты Photoshop: Curvesи Levels
  • Инструменты Dodge и Burn в Lightroom и Photoshop

Примечание: во времена плёночной фотографии. Негативы увеличивали и печатали на бумаге различных классов (или на универсальной). Различие классов фотобумаги заключалось в контрасте, который они могли воспроизвести. Это классический метод тонального отображения. Тональное отображение – может звучать, как что-то новое, но это далеко не так. Ведь только на заре фотографии схема отображения снимка выглядела: сцена – устройство вывода изображения. С тех пор последовательность остаётся неизменной:

Сцена > Захват изображения > Вывод изображения

Отображение динамического диапазона. Сцена с более высоким ДД

Теперь давайте рассмотрим ситуацию, когда мы снимаем сцену с более высоким динамическим диапазоном:

Вот пример того, что вы можете получить в результате:

Как мы видим, камера может захватить только часть динамического диапазона сцены. Ранее мы уже отмечали, что потеря деталей в области светов – редко допустима. Это означает, что нам необходимо изменить экспозицию для того, чтобы защитить область светов от потери деталей (конечно, необращая внимание на зеркальные блики, например, отражений). В результате мы получим следующее:

Теперь мы получили существенную потерю деталей в области теней. Возможно, в некоторых случаях это может выглядеть достаточно эстетично, но только не тогда, когда вы хотите отобразить на фото и более тёмные детали.

Ниже приведен пример того, как может выглядеть фотография, при уменьшении экспозиции для сохранения деталей в области светов:

Захват высокого динамического диапазона при помощи брекетинга экспозиции.

Так как же вы можете захватить весь динамический диапазон при помощи камеры? В этом случае решением будет Брекетинг экспозиции: съёмка нескольких кадров с последовательным изменением уровнем экспозиции (EV) так, чтобы эти экспозиции частично перекрывали друг друга:

В процессе создания HDR-фотографии вы захватываете несколько различных, но взаимосвязанных экспозиций, охватывающих весь динамический диапазон сцены. В целом экспозиции отличаются на 1-2 стопа (EV). Это означает, что необходимое число экспозиций определяется следующим образом:

  • ДД сцены, который мы хотим захватить
  • ДД, доступный для захвата камерой за 1 кадр

Каждая последующая экспозиция может увеличиваться на 1-2 стопа (в зависимости от брекетинга, выбранного вами).

Теперь давайте выясним, что вы можете сделать с полученными снимками с разной экспозицией. На самом деле, вариантов немало:

  • Объединить их в HDR-изображение вручную (Photoshop)
  • Объединить их в HDR-изображение автоматически при помощи Automatic Exposure Blending (Fusion)
  • Создать HDR-изображение в специализированном программном обеспечении для обработки HDR

Ручное объединение

Ручное объединение снимков с различной экспозицией (используя, по сути, технику фотомонтажа) почти столь же старо, как искусство фотографии. Несмотря на то, что в настоящее время Photoshop и делает этот процесс более лёгким, но он всё еще может быть достаточно утомительным. Имея альтернативные варианты, вы, вряд ли, прибегнете к объединению снимков вручную.

Автоматическое смешивание экспозиций (также называемое Fusion)

В этом случае за вас всё сделает программное обеспечение (например, при использовании Fusion в Photomatix). Программа выполняет процесс объединения кадров с различной экспозицией и генерирует конечный файл изображения.

Применение Fusion обычно дает очень хорошие изображения, которые выглядят более «естественными»:

Создание HDR-изображений

Любой процесс создания HDR включает два этапа:

  • Создания HDR изображения
  • Тональная конвертация HDR-изображения в стандартное 16-битное изображение

При создании HDR-изображений вы, на самом деле, преследуете ту же цель, но идёте иным путём: вы не получаете конечное изображение сразу же, а снимаете несколько кадров с различной экспозицией, а затем объединяете их в HDR-изображение.

Новшество в фотографии (которая уже не может обходиться без компьютера): 32-битные HDR-изображения с плавающей точкой, позволяющие хранить практически бесконечный динамический диапазон тональных значений.

В ходе процесса создания HDR-изображения, программа сканирует все тональные диапазоны, полученные в результате брекетинга, и генерирует новое цифровое изображение, включающее совокупный тональный диапазон всех экспозиций.

Примечание: когда появляется что-то новое, всегда найдутся люди, утверждающие, что это уже не ново, и они делали это еще до своего рождения. Но расставим все точки над i: способ создания HDR-изображения, описанный здесь, достаточно новый, поскольку для его использования необходим компьютер. И с каждым годом результаты, получаемые при помощи этого способа, становятся всё лучше и лучше.

Итак, ещё раз вернёмся к вопросу: зачем создавать изображения с высоким динамическим диапазоном, если динамический диапазон устройств вывода настолько ограничен?

Ответ заключается в тональном отображении – процессе конвертации тональных значений широкого динамического диапазона в более узкий динамический диапазон устройств вывода изображений.

Именно поэтому тональное отображение для фотографов является самым важным и непростым этапом создания HDR-изображения. Ведь вариантов тонального отображения одно и того же HDR-изображения может быть множество.

Говоря о HDR-изображениях, нельзя не упомянуть о том, что они могут быть сохранены в различных форматах:

  • EXR (расширение файла: .exr, широкая цветовая гамма и точная цветопередача, ДД около 30 стопов)
  • Radiance (расширение файла: .hdr, менее широкая цветовая гамма, огромный ДД)
  • BEF(собственный Формат UnifiedColour, направленный на получение более высокого качества)
  • 32-битный TIFF (очень большие файлы из-за низкой степенью сжатия, в силу этого редко применяется на практике)

Для создания HDR-изображений вам потребуется программное обеспечение, поддерживающее создание и обработку HDR. К таким программам можно отнести:

  • Photoshop CS5 и старше
  • HDRsoft в Photomatix
  • Unified Color’s HDR Expose или Express
  • Nik Software HDR Efex Pro 1.0 и старше

К сожалению, все перечисленные программы генерируют различные HDR-изображения, которые могут отличаться (подробнее об этих аспектах мы поговорим позже):

  • Цветом (оттенком и насыщенностью)
  • Тональностью
  • Сглаживанием
  • Обработкой шумов
  • Обработкой хроматических аберраций
  • Уровнем подавления ореолов

Основы Тонального отображения

Как и в случае со сценой с низким динамическим диапазоном, при отображении сцены с высоким ДД мы должны сжать ДД сцены до выходного ДД:

В чём же отличие рассмотренного примера с примером сцены с низким динамическим диапазоном? Как видите, в этот раз, тональная компрессия более высока, так что классический способ с тональными кривыми уже не работает. Как обычно, прибегнем к самому доступному способу показать основные принципы тонального отображения – рассмотрим пример:

Чтобы продемонстрировать принципы тонального отображения, воспользуемся инструментом HDR Expose программы Unified Color, поскольку он позволяет выполнять с изображением различные операции по модульному принципу.

Ниже вы можете увидеть пример генерации HDR-изображения без внесения каких-либо изменений:

Как видите, тени вышли достаточно тёмными, а области светов – пересвечены. Давайте взглянем, что нам покажет гистограмма HDR Expose:

Как видите, область светов стала выглядеть гораздо лучше, но в целом изображение выглядит слишком тёмным.

То, что нам нужно в этой ситуации – это объединить компенсацию экспозиции и снижение общего контраста.

Теперь общий контраст в порядке. Детали в области светов и теней не теряются. Но, к сожалению, изображение выглядит довольно плоским.

Во времена до эпохи HDR, эта проблема могла быть решена при помощи использования S-образной кривой в инструменте Кривые (Curves):

Однако, создание хорошей S-кривой займёт некоторое время, а в случае ошибки, легко, может привести к потерям в области светов и теней.

Поэтому инструменты тонального отображения предусматривают другой путь: улучшение локального контраста.

В полученном варианте детали в светах сохранены, тени не обрезаны, а плоскостность изображения исчезла. Но и это ещё не окончательный вариант.

Для придания фотографии завершённого вида оптимизируем изображение в Photoshop CS5:

  • Настроем насыщенность
  • Оптимизируем контраст с помощью DOPContrastPlus V2
  • Увеличим резкость с помощью DOPOptimalSharp

Основное различие между всеми инструментами для работы с HDR заключаются в алгоритмах, используемых ими для понижения контраста (например, алгоритмы определения того, где заканчиваются общие настройки и начинаются локальные).

Не существует правильных или неправильных алгоритмов: всё зависит от ваших собственных предпочтений и вашего стиля фотографии.

Все основные инструменты для работы с HDR, предлагаемые рынком, также позволяют контролировать и другие параметры: детализация, насыщенность, баланс белого, удаление шума, тени/света, кривые (большинство из этих аспектов мы подробно рассмотрим позже).

Динамический диапазон и HDR. Резюме.

Способ расширения динамического диапазона, который способна захватить камера, весьма стар, поскольку ограниченность возможностей камер известна очень давно.

Ручное или автоматическое наложение изображений предлагает очень мощные способы конвертации широкого динамического диапазона сцены до динамического диапазона, доступного вашему устройству вывода изображения (монитору, принтеру и т.д.).

Создание бесшовных объединённых изображений вручную может быть очень сложным и трудоемким: бесспорно, метод Dodge & Burn– незаменим для создания качественного отпечатка изображения, но он требует длительной практики и усердия.

Автоматическая генерация HDR-изображений является новым способом преодолеть старую проблему. Но при этом алгоритмы тонального отображения сталкиваются с проблемой сжатия высокого динамического диапазона до динамического диапазона изображения, которое мы можем просмотреть на мониторе или в распечатанном виде.

Различные методы тонального отображения могут дать совершенно различные результаты, и выбор метода, дающего желаемый результат, зависит только от фотографа, то есть от вас.

Больше полезной информации и новостей в нашем Telegram-канале «Уроки и секреты фотографии» . Подписывайся!

Добрый день, друзья!

Продолжаем сегодня знакомство с . Привел ссылку, где обзорно рассказывал о принципе работы фотокамер. Далее мы детальнее остановимся на отдельных элементах, о которых в общих чертах фотограф должен иметь понятие. Если будут встречаться непонятные для вас определения или термины, ничего страшного, просто продолжайте читать, и вы обязательно поймете суть. Уверен в этом! А важно именно общее понимание.

Статья довольна объемная, поэтому для удобства навигации оформил для вас содержание 🙂

Матрица в фотоаппарате. Что это такое?

Матрица в камере – это основной элемент, при помощи которого мы получаем изображение. Также часто называется сенсором или датчиком. Представляет собой микросхему, состоящую из фотодиодов – светочувствительных элементов. В зависимости от интенсивности попадающего света фотодиод формирует электрический сигнал разной величины, который впоследствии преобразуется в цифровой при помощи отдельного АЦП или встроенного в матрицу.

Матрица фиксирует свет и превращает его в набор битов (0/1), который затем формирует цифровое изображение.

Выглядит она следующим образом:

Матрица в фотоаппарате

Блестящая прямоугольная пластина по центру – это она и есть. А по краям фотографии .

Дискретная структура матрицы

Основу составляют очень маленькие фотодиоды или фототранзисторы, которые фиксируют свет и превращают его в электрический сигнал. Один такой фотодиод формирует один пиксель выходного цифрового изображения.

Небольшое отступление для тех, кто, возможно, не знает. Цифровое изображение состоит из множества точек, которые наш мозг «склеивает» в целостную картинку. Если таких точек будет недостаточно, мы станем замечать дискретность структуры, иными словами, станет казаться, будто изображение «распадается», являясь мозаичным, плавные переходы исчезнут.

Давайте рассмотрим фотографию собаки.

Дискретная структура матрицы на примере собаки

Не обращайте сейчас внимания, что она черно-белая. Абстрагируйтесь от понятия цвета, это другая тема, в данный момент так лучше будет воспринимать информацию. Матрица фиксирует электрический сигнал разной величины в зависимости от интенсивности света. И, если отнять специальные фильтры, предназначенные для получения цветного изображения, то выходная фотография получается как раз черно-белой. Кстати, камеры, снимающие исключительно в ЧБ, также существуют.

Схематически нанес на изображение сетку, иллюстрирующую дискретную, т.е. прерывную структуру матрицы. Каждый квадрат иллюстрирует минимальный элемент матрицы – пиксель, формируемый фотодиодом, на который попадает свет N-ой интенсивности и на выходе преобразуется в пиксель цифрового изображения N-ой яркости. К примеру, левый верхний угол темный – значит, на этот участок матрицы попало мало света. Шерсть, напротив, светлая – значит, туда попало больше света и электрический сигнал был иным. Естественно, изображение состоит из намного большего числа квадратиков, тут лишь схематическое изображение.

Матрица – аналог пленки

Раньше, когда не было цифровых фотоаппаратов, в качестве светочувствительного элемента, то бишь матрицы, использовалась пленка. В принципе конструкция пленочного фотоаппарата от цифрового не слишком сильно отличается, в последнем больше электроники, а вот «приемник» света совершенно иной.

Когда в пленочном фотоаппарате вы нажимаете на кнопку спуска, открывается затвор, и свет попадает на пленку. До момента закрытия затвора происходит химическая реакция, результат которой – изображение, хранящееся на пленке, но невидимое глазу до момента проявки. Пример такого химического процесса – разложение галогенида серебра на атомы галогена и серебра.

Как видите, сама суть совершенно другая. Пишу это для того, чтобы вы запомнили, что в современном мире матрица выполняет функции пленки, т.е. формирует изображение. Кстати, разница между ними в хранении: пленка является непосредственно и местом хранения конечного изображения, в цифровой фотографии изображение сохраняется на картах памяти.

Экспонирование матрицы

Важный термин, который часто используют фотографы. Означает сам процесс получения фотоснимка. Т.е. когда вы нажали кнопку спуска затвора, последний открылся и свет стал попадать на матрицу, говорят, что идет ее экспонирование. Идет до тех пор, пока затвор не закроется.

Вы можете услышать словосочетания «во время экспонирования…», «процесс экспонирования…», «при экспонировании…». Обычно слово «матрица» опускается, и говорят просто – экспонирование.

Характеристики матрицы

Нужно отдавать отчет, что матрицы сильно различаются друг от друга, и в различных ценовых диапазонах им присущи те или иные качества. Этот элемент можно считать «сердцем» камеры, как двигатель в машине или процессор в компьютере. Хотя ни машина, ни компьютер с одним только двигателем или процессором работать не станут, тем не менее эти элементы определяют потенциал системы. Сложно ожидать, что машина с двигателем малого объема сможет демонстрировать чудеса проворности в гонках. Так и с камерой – в бюджетном диапазоне они оборудуются ограниченными по возможностям матрицами, и от них сложно ожидать бесшумной картинки при съемке на длинной выдержке. Понятно, что есть характеристики, которые категоризуют матрицы по возможностям. К их рассмотрению и перейдем.

Для начала перечень основных характеристик:

  • физический размер;
  • разрешение;
  • соотношение сигнал/шум;
  • чувствительность ISO;
  • динамический диапазон
  • тип матрицы (устарело).

Теперь рассмотрим все детально.

Физический размер матрицы фотоаппарата

Матрица представляет собой прямоугольную пластину, которая собирает свет, и естественным образом имеет размеры. Выше мы рассматривали дискретную структуру матрицы, где уяснили, что она состоит из пикселей, которые в физическом смысле представляют собой фотоэлементы, превращающие попадающий свет в электрические заряды.

Соответственно, физический размер матрицы определяется величиной пикселей и расстоянием между ними. Чем больше будет расстояние между пикселями, представляющее собой изоляционный слой, тем меньше будет нагрев матрицы, тем выше будет соотношение сигнал/шум и чище выходная картинка.

Идем далее. Размер матрицы – это один из важнейших параметров, на который обязательно стоит обращать внимание. Для начинающих фотографов упрощенно отмечу, что размер матрицы – самая важная ее характеристика .

На практике отмечается в миллиметрах, либо обозначением формата, либо в дюймах диагонали сенсора. Формат – это просто наименование матрицы с определенными размерами. Называют так для упрощения. Что касается дюймов, то тут история тянется с измерения площади изображения на трубчатых телевизорах. Записывается, например, так: 1/1,8″. Не стоит производить математические вычисления, задаваясь целью определить физический размер диагонали и посчитать размеры сторон. Это просто обозначение, не имеющее математической силы. Важно лишь понимать, что матрица с диагональю 1/2,7″ заметно меньше, чем с 1/1,8″. Приведу популярные размеры:

На что влияет размер матрицы?

Чем больше размер матрицы, тем лучше

Это не всегда так, и с утверждением можно поспорить, но в общем случае это соответствует действительности. Более опытные читатели предвкушают переход темы в холиварное русло «Кроп vs полный кадр»:) Не стану сейчас потакать их желаниям, ведь мы говорим о фундаментальных вещах! Вернемся к теме.

От размера матрицы зависит:

  1. шумность изображения;
  2. динамический диапазон;
  3. глубина цвета;
  4. габариты камеры.

Опосредованно с изменением размера матрицы изменяется ГРИП и угол обзора, т.к. для получения снимка в том же масштабе приходится менять другие параметры (фокусное расстояние, расстояние до объекта съемки).

Чем больше матрица, тем:

  • Менее шумное изображение. Физики скажут, что чем больше света попадает на фиксирующую его поверхность, тем меньше нагрев, меньше погрешность при квантовании и, следовательно, меньше влияние постороннего шума. Изображение при одних и тех же условиях получается более «чистым» и детализированным. Конечное изображение будет содержать меньше лишней информации, вызванной «помехами». Теперь более практичное определение. При равном количестве пикселей и одинаковой технологии чем больше матрица, тем меньше шума будет на снимке при съемке с недостаточным освещением. Попросту говоря, на фотографии будет меньше посторонних точек, мешающих просмотру. Например, намереваясь снимать с рук сумеречные портреты, предпочтительно обладать камерой с матрицей большого размера.Чем меньше матрица, тем меньше изолирующие элементы между пикселями. По этой причине возникает повышенный нагрев, что в электронике всегда плохо, ухудшается соотношение сигнал/шум и количество шума на получаемом изображении растет в сравнении с моделями, обладающими большими матрицами. Давайте посмотрим на пример:
    Слева условно изображение, получаемое с камеры с большей матрицей, справа – с меньшей. Условия съемки одни и те же. Увеличьте изображение. Достаточно посмотреть на небо. Разница может варьироваться, но тенденция сохранится (при условии, что матрицы схожи по технологиям и поколениям). На практике шум отлично просматривается в светах, и, вытягивая тени на одну и ту же величину, на камере с большей матрицей вы сможете получить более чистую картинку. Под вытягиванием понимается увеличение экспозиции в редакторе, в данном случае в тенях – в них начинают проявляться детали. Если вы предпочитаете следующие жанры: вечерние/ночные пейзажи, портреты в режимное время, когда света не очень много, динамичную репортажную съемку, обратите внимание на уровень шума матрицы выбранной камеры. По размеру желательно выбирать камеры с матрицами, начиная от APS-C формата.
  • Шире динамический диапазон (об этом далее в статье).
  • Больше глубина цвета . Глубина цвета — показатель, определяющий, насколько мелкие цветовые изменения может различить камера. Т.е. при большей глубине цвета незначительные переходы в полутонах будут смотреться более естественно и близко к видимому глазом. Будет записано больше информации о полутонах. Это проявляется, например, на почти однотонных пейзажах.
  • Больше камера. Непреложный факт – если вы хотите снимать на камеру с большей матрицей, придется мириться с ее увеличенными размерами. Взглянув на рынок фотоаппаратов, становится понятно, что не существует, например, небольших полнокадровых камер, хоть и пытаются такие сделать. А мобильная фотография ограничена размером сенсора.
  • Больше угол обзора можем получить при прочих равных условиях .
    Размер матрицы не влияет на угол обзора!!! Перспектива, получаемая на одном и том же объективе, установленном на разных камерах будет отличаться. Но при одинаковом ЭФР (эквивалентном фокусном расстоянии) изображение будет примерно одинаковым. Если вам понятия перспективы и ЭФР мало о чем говорят, ничего страшного, просто читайте дальше, рассказываю важную суть «на пальцах». Если взять один и тот же объектив, то, снимая на фотоаппарат с матрицей большего размера, вы получите более широкий обзор. Примем приближение объектов при съемке на фотоаппарат с большей матрицей за 100%. Тогда этот же объектив на меньшей матрице обеспечит приближение >100% (приближение будет кратно уменьшению размера матрицы). Такой же эффект можно смоделировать, вырезав из фотографии (снятой на большую матрицу) часть кадра и растянув его до исходного размера. Иными словами, мальчик, которого сфотографировали на 35 мм объектив на камеру с APS-C матрицей (посмотрите таблицу размеров матриц), будет ближе, чем этот же мальчик, сфотографированный на такой же объектив, но на полнокадровую матрицу (FF). Солнце на горизонте, снятое на матрицу меньшего размера, будет «расположено ближе» к нам:
  • Меньше ГРИП можно получить при прочих равных условиях . Это еще один интересный аспект, который вводит фотографов в заблуждение и требует рассмотрения. Забегая наперед, ГРИП (глубина резко изображаемого пространства) определяет, на каком расстоянии от точки фокусировки объекты будут находиться в зоне резкости. Размер матрицы не влияет на ГРИП!!! Но, чтобы на разных камерах при одинаковых фокусных расстояниях масштаб изображения был одинаковым, на камерах с меньшими матрицами придется отойти подальше либо изменить фокусное расстояние, что в свою очередь уже как раз влияет на ГРИП, увеличивая его. Поэтому на камерах с большими матрицами проще получать «размытые» фотографии.

Это не все, но основные моменты, критичные для фотографа, на которые прямо или косвенно влияет размер матрицы фотоаппарата и которые для себя нужно четко уяснить.

Тип матрицы

Определяет принцип, по которому работает матрица. Существовало две основных технологии:

  • CMOS (КМОП – комплементарная логика на транзисторах);
  • CCD (ПЗС – прибор с зарядовой связью).

Матрицы, основанные на обеих технологиях, накапливают свет. Только в первой мельчайшим структурным элементом является диод, во второй – транзистор.

Что касается качества изображения, то во времена широкого распространения обеих технологий считалось, что CCD матрицы обладали более приятным, «ламповым» цветом, в то же время CMOS меньше шумели, но структура шума отличалась.

На сегодняшний день абсолютное большинство камер комплектуется матрицами CMOS типа, как менее шумными и более энергосберегающими. Поэтому вопрос выбора по этому параметру не стоит. Это лишь памятка при использовании устаревших камер.

Чувствительность матрицы. ISO

От чувствительности матрицы зависит соотношение выбранной экспозиции и параметров изображения на выходе. Попросту говоря, чем больше вы устанавливаете чувствительность (меняется в настройках камеры), тем менее освещенные элементы вы сможете зарегистрировать. Но при этом будут расти шумы. За эквивалентный параметр чувствительности принят параметр ISO. Начинается от 50 – это минимальная чувствительность, на которой изображение, насколько возможно, чистое и неподверженное шумовому разрушению. Шаг изменения формируется умножением на 2. Т.е. следующая чувствительность ISO – 100, далее 200, 400, 800, 1600, 3200, 6400… Конечно же, камеры снимают и на промежуточных значениях, например, 546. Но для удобства шагов в стопах принято считать, как описал выше. Про ISO, стопы и прочее сейчас особо не беспокойтесь.

Важно понять, что, снимая один и тот же сюжет (например, дерево в сумерках), при повышении ISO его яркость увеличится. Картинка будет казаться светлее. Также важно понять, что на камере с большей матрицей при одинаковом ISO шумов будет меньше.

Далее для тех, кто хочет знать больше. Есть такое понятие – EI (exposure index). Он определяет соотношение между сигналом, передаваемым с матрицы и параметрами его преобразования в цветовое пространство. Что он позволяет? При одних и тех же настройках экспозиции мы имеем возможность получить изображение различной яркости.

Поступая на матрицу, свет формирует сигнал (выходное напряжение), который в АЦП конвертируется в цветовое пространство. Наиболее распространенное – sRGB. При этом происходит его усиление. Если сигнал слабый, нужно его усилить больше. EI становится другим. Камеры предустанавливают заданный диапазон значений EI, который для упрощения называется ISO. Пошло с пленочного мира и сейчас используется для удобства. Диапазон зависит от возможностей матрицы. Например, на старых зеркалках не было возможности установить ISO 6400 просто из тех соображений, что при такой чувствительности качество изображения из-за шумов станет неприемлемым. Далее про усиление слабого сигнала.

Соотношение сигнал/шум

Следующая характеристика матрицы, неразрывно связанная с чувствительностью – соотношение сигнал/шум. Думаю, суть вам уже ясна. Выражаясь простым языком, это соотношение определяет, сколько полезного сигнала (света от снимаемого вами объекта) и шума будет содержаться в конечном изображении.

Выше мы говорили о том, что при попадании света на матрицу ее фотоэлементы генерируют сигналы в виде выходящего напряжения. Допустим, получается напряжение 0,2 В. Пусть это, к примеру, соответствует чистому зеленому цвету согласно sRGB пространству при ISO 200. Прикрывая диафрагму или делая короче выдержку, мы уменьшаем попадаемый на матрицу световой поток. Напряжение на матрице станет не 0,2, а 0,1 В (для примера, конечно). Что при заданном ISO 200 будет соответствовать не чистому зеленому цвету, а более темному зеленому с грязноватыми примесями. Если мы выставим на камере ISO 400, то напряжение автоматически поднимется до 0,2 В, и мы получим изначальный чистый зеленый цвет.

НО! При этом на матрице формируется плохая составляющая в виде шума, который при базовом ISO не заметен. Но, усиливая сигнал, мы также усиливаем и шум. В разумных пределах это допустимо и не критично. Важно понимать ту грань, когда последующее увеличение чувствительности и, соответственно, соотношения сигнал/шум ведет к неприемлемым результатам.

Допустим, вы снимаете друзей для публикации личных фотографий в социальные сети. Они не слишком заморачиваются безукоризненным качеством фотографий и хотят получить классные эмоции, яркие и приятные снимки. В таком случае небольшой или даже значительный шум, корректируемый в редакторе, не станет проблемой. Но, если вы фотографируете пейзаж и желаете его потом распечатать размером 30×40 см или больше, то лучше изначально выставлять минимально возможное ISO. В принципе, при съемке пейзажей придерживайтесь правила изначальной установки минимального ISO. Просто поставили его и забыли, дальше работайте с остальными параметрами.

Сигнал/шум также зависит от размера пикселя. Поэтому переходим к следующему параметру.

Разрешение матрицы

Популярный параметр, который до сих пор в некоторых магазинах применяется в качестве основного.

В технической документации можно увидеть, например, 6000 x 4000. Это значит, что по ширине расположено 6000 фотоэлементов, фиксирующих свет, а по высоте – 4000. Перемножив, получим общее количество фотоэлементов (пикселей) на матрице – 24000000. Для читабельности пишут 24 МП. Размерность – мегапиксели. Приставка «мега» соответствует степени 10 в 6й степени.

Больше мегапикселей не равно лучше

Современные камеры обычно комплектуются матрицами от 16 МП и выше. Но сейчас не редкость и 36 МП, и 42 МП. Встречаются модели и с большим разрешением. В этом и заключается традиционная маркетинговая уловка, на которую раньше, да и сейчас тоже, «ловят» покупателей, предлагая приобрести камеры с высоким разрешением, «забывая» о сопутствующих подвохах и вообще не интересуясь целями покупателя. А мы копнем чуть глубже и поинтересуемся размером пикселя.

Физический размер пикселя – очень важная характеристика, измеряется в мм или мкм. Если пиксель больше, то он сможет собрать больше света, и соотношение сигнал/шум будет выше со всеми вытекающими последствиями. Т.е. такая матрица при прочих равных будет шуметь меньше.

Определить очень просто. Возьмем матрицу популярного APS-C формата с разрешением 24 МП, что соответствует физическому размеру примерно 23.6 x 15.8 мм. Разрешение в пикселях ­– 6000 x 4000. Значит, по длинной стороне 6000 точек нашего выходного изображения формируется на 23.6 мм. Делим физическое расстояние на количество точек и получаем размер пикселя, составляющий примерно 0.004 мм. Если матрица такого же поколения, аналогичной структуры и физического размера обладает большим разрешением, то размер пикселя будет меньше, что увеличит нагрев и шумы. Говорят, нагрев примерно на 8 градусов ведет к двукратному росту шумов.

Практические особенности размера пикселя:

  1. Шумы. Как неоднократно рассматривали, при прочих равных меньше пиксель = больше шумы.
  2. Увеличенная шевеленка. Меньший пиксель более чувствителен к дрожанию рук и смещению камеры по отношению к снимаемому объекту. Представьте, будто пиксель по размеру соответствует теннисному мячу, а вы снимаете кота. Пиксель в виде теннисного мяча фиксирует свет, соответствующий темному пятну на шерсти кота. Если вы немного пошевелите матрицу с такими пикселями, то на этот пиксель вероятнее всего будет попадать свет от этого же темного пятна. Смещение не вызовет глобальных проблем в изображении. Предположим, что снимаем этого же кота на камеру с матрицей, обладающей маленькими пикселями, и на определенный пиксель попадает ворсинка пятна кота. Немного сместив камеру, получится, что пиксель будет фиксировать другую ворсинку.Таким образом, детализация растет, но изображение становится смазанным. Для определенных целей это подходит лучше, но требует больших навыков от фотографа и имеет свои особенности при съемке отдельных жанров.
  3. Повышенные требования к объективу. Меньший физический размер пикселя говорит о том, что для получения детализированной фотографии разрешающая способность объектива должна быть выше. Объектив тоже имеет разрешающую способность, и на каждый миллиметр матрицы он может спроецировать ограниченное количество точек. Большей разрешающей способностью обладают более дорогие объективы. При этом, если разрешающая способность объектива ниже таковой у матрицы, то изображение будет недостаточно детализированным. Говорят, что «матрица не раскроется». По факту система не сбалансирована и результат будет, как на более дешевой, но сбалансированной технике.Разрешающая способность фотоаппарата, как целостной системы, не превышает разрешающей способности каждого из компонентов (матрицы или объектива). В идеале, их разрешающая способность должна быть примерно равна. Но практика, как обычно, вносит массу корректив.
  4. Больше разрешение – мощнее компьютерное железо. Чем больше разрешение, тем большие требования предъявляются к компьютеру при обработке. Если вы желаете получить хорошие результаты и даже не снимаете в RAW (советую все-таки перейти к RAW’у), то вам все равно придется «вертеть» изображение в Photoshop’е или другом редакторе. А при разрешении 24 МП, 36 МП или выше это может быть проблемой. Даже если небольшие правки вносятся достаточно шустро, то небольшие задержки на большом фотосете будут раздражать и сильно красть время.

Динамический диапазон матрицы

Динамический диапазон (сокращенно ДД) определяет максимальный яркостной диапазон снимка.

Каждый пиксель обладает своей яркостью. Для упрощения будем рассматривать яркость отдельных участков кадра, например, неба. Допустим, вы снимаете городской пейзаж в яркий солнечный день, и в кадр попадает яркое небо и очень темные здания. Если вы экспонируете кадр (определяете экспозицию) по небу, то на выходе получается хорошо проработанное небо и темные или почти черные здания. Наоборот, экспонируя по зданиям, получаем их нормальную яркость, но при этом неба совершенно нет, вместо него белое пятно. Сталкивались с такой ситуацией? Думаю, наверняка.

Так вот динамический диапазон как раз определяет то, насколько широкий яркостной участок сможет охватить камера без потерь информации в самых светлых и самых темных частях кадра.

Динамический диапазон – это неизменная характеристика матрицы, зависящая от технологии производства. Мы можем лишь сузить его, установив большое значение чувствительности ISO, что, как вы понимаете, нежелательно.

На этой фотографии внизу достаточно темные участки, а вверху – яркие солнечные лучи, и съемка ведется в контровом свете, против солнца. Это заведомо тяжелые для камеры условия, создается слишком высокий контраст.

А вот еще более яркий пример с выбитым небом. Фактически классика, такого в папках многих людей предостаточно, и с этим нужно что-то делать.

Недостаточный динамический диапазон матрицы

В таком случае говорят, что снимаемая сцена не укладывается в динамический диапазон камеры. И нужно прибегать либо к перекомпоновке кадра, чтобы снизить контраст сцены, либо к использованию художественных приемов, обыгрывая недостатки техники, либо использовать технику его расширения (HDR). Вы резонно спросите: «Но ведь мы же видим одновременно и голубое небо, и темные детали. Как же так?». Сей факт можно отнести к несовершенству техники. Динамический диапазон глаза превышает диапазон камеры где-то в 2 раза.

Резюмируем

Сразу хочу развеять ваши сомнения. Цель этой статьи — заложить у вас понимание, что и как работает. Не расстраивайтесь, если многое непонятно — главное, создать «полочки» в вашей голове, структуру, а потом по мере надобности заполнять их информацией. Но материал, безусловно, важен и является костяком для понимания фотографии. Поэтому, если совсем ничего непонятно, перечитайте еще раз либо вернитесь к нему позднее. И специально для вас сделаю краткую выдержку из того, что желательно отложить у себя в голове:

  1. Матрица – это один из важнейших элементов в камере, который фиксирует свет, превращая его в электрические сигналы. Не может быть заменена в камере. Является аналогом пленки в пленочных фотоаппаратах.
  2. Процесс получения снимка, когда открыт затвор, называется экспонированием.
  3. Матрица имеет множество характеристик. Размер – одна из важнейших, по нему косвенно можно предполагать остальные параметры. Как класс автомобиля – от седана B-класса не ждешь огромного пространства, как в седане E-класса, каким бы продвинутым и дорогим он ни был.
  4. Выбирая камеру с тем или иным размером матрицы, стоит понимать ее достоинства и недостатки и быть готовым ими пользоваться. Маленькая матрица больше всего страдает в условиях, когда света недостаточно. Если планируете развиваться в сфере фотографии и вам это действительно нравится, советую обратить внимание на формат Micro 4/3 или остановиться на APS-C варианте.
  5. Качественная матрица — залог хорошего изображения. При выборе камеры нужно начинать с нее. С другой стороны, в крайности бросаться тоже не нужно – дорогая полнокадровая камера с дешевым объективом вряд ли принесет хороший результат. Точнее, он будет хуже, чем мог бы быть. Но сегодня камеру с откровенно плохой матрицей нужно поискать.
  6. Не гонитесь за высоким разрешением. Даже минимального в современных камерах будет за глаза.
  7. Вообще по приоритету, что важно для получения качественного изображения, . Рекомендую прочесть, если еще не читали. Если у вас сложилось впечатление превосходства технических параметров над творчеством, эта статья покажет вам обратное, подводя к мысли, что важен баланс. Возможно смещение в творческую сторону. Но смещение в сторону технофильства ни к чему хорошему в плане результатов не приводит.

И конечно же, я к вашим услугам! На все возможные вопросы в рамках моей компетенции всегда готов ответить в комментариях.

Динамический диапазон - фактически, разница значений сенсора фотокамеры, получаемых деталей при ярком освещении и при отсутствии света. Если речь идёт непосредственно о процессе фотографии, как правило, значения динамического диапазона измеряются единицами экспозиции (EV ). С динамическим диапазоном приходится также иметь дело при обращении к разным форматам фотографических файлов. Здесь характеристика динамического диапазона определяется исходя из типа данных для определенного формата файла и преследуемых целей в процессе съемки. К примеру, для формата jpeg, значения динамического диапазона определяются на основе 8-битного гамма - корректированного стандарта представления цвета sRGB . В данном случае для формата jpeg значение динамического диапазона равняется 11,7EV . Если взять другой формат - Rediance HDR , здесь уже значение динамического диапазона приближается к 256EV .

Нередко под рассматриваемым термином понимают любую разницу отношений сигналов яркости в процессе фотографии. Допустим, разницу отношений яркостных сигналов наиболее светлых и наиболее темных тонов, разницу отношений яркостного сигнала белого и черного полей на фотобумаге, разницу отношений оптических плотностей фотопленки и т.д. В каждом определенном случае характеристику динамического диапазона, с точки зрения количества бит, необходимых для формирования информации, также следует рассматривать с разных точек зрения. К примеру, цифро - аналоговым преобразователем фотоаппарата на 10, 12, 14 бит, как правило, считываются значения по линейной шкале, а в случаях с форматами фотографических файлов используются значения гамма - корректированного стандарта. Нередко встречается достаточно много отдельных нюансов, когда динамический диапазон, измеряемый компьютерным форматом представления чисел (числа половинной точности), несколько шире диапазона, представленного целыми числами, несмотря на тот момент, что речь в обоих случаях идёт о 16-ти битах.

Современные фотографические камеры и фотопленки обладают недостаточной шириной динамического диапазона, чтобы можно было иметь возможность без искажений передавать любой сюжет. Недостаток особенно заметен при эксплуатации компактных цифровых фотоаппаратов и цветных обращаемых фотопленок. Многие современные цифровые камеры обеспечивают пользователю брекетинг , но зачастую неспособны точно передать яркий пейзаж с теневыми объектами в дневных условиях съемки. Однако проблемы недостатка широты динамического диапазона вполне решаемы. Для этого применяются: коррекция освещенности объектов, постановка искусственного освещения, установка специальных режимов работы фотоаппаратов и прочие методы. Также можно компенсировать недостаток динамического диапазона без учета изменений освещения, сцены, ракурса. В этом варианте увеличивают значения динамического диапазона сенсоров фотокамер либо прибегают к комбинации изображений, отснятых с разными значениями экспозиции. Глубина динамического диапазона зависит от размера матрицы , чем она больше, тем больше деталей на фотографии.

Между тем, каждый из двух отмеченных вариантов требует учитывать некоторые моменты:

Использование определенного формата файла для записи изображения с более широким яркостным диапазоном. К таким форматам сегодня относятся: OpenEXP , Radiance HDR , Photoshop , RAW , Microsoft HD Photo .

Применение метода тональной компрессии в процессе производства изображений и фотоснимков, для получения изображения с широким динамическим диапазоном.

Использование метода тонального отображения с целью нелинейного изменения яркости отдельных пикселей.

Последняя методика тональное отображение сегодня широко применяется для обработки изображений, имеющих малый диапазон значений яркости. С помощью метода тонального отображения появляется возможность повышения значения локального контраста для таких изображений. Между тем, многие профессиональные фотографы довольно скептически относятся к методике тонального отображения, считая данный способ расширения динамического диапазона «фантастическим ». Всё дело в том, что в результате обработки, получается, так сказать, фотография 4000 в образе близком к стилистике изображений для компьютерных игр.

Динамический диапазон (сокращенно - ДД) применительно к фотографии - это способность светочуствительного материала (фотоплёнки, фотобумаги) или прибора (матрицы цифрового фотоаппарата) фиксировать и передавать без искажений весь спектр яркостей и цветов окружающего мира. По крайней мере, ту часть яркостей и цветов, которую воспринимать человеческий глаз.

Сразу хочу заметить, что возможности фотоаппарата значительно уступают возможностям человеческого зрения.

Цифровой фотоаппарат "видит" совсем не то, что выдит человек.
Современный цифровой фотоаппарат способен воспринимать
очень узкий диапазон светов и цветов реального мира.

Цифровой фотоаппарат, даже самая дорогая зеркалка, воспринимает намного меньше оттенков цветов, чем человек, однако он "способен увидеть", то что не воспринимается зрением человека, например часть ультрафиолетового спектра. Т.е. у фотоаппарата смещён диапазон восприятия - так бы сказал физик или биолог:о)

Кроме того, цифровой фотоаппарат не способен одновременно правильно передать как яркие так и тёмные объекты. Здесь бы физик сказал, что у матрицы фотоаппарата узкий динамический диапазон - ДД.

О тчего зависит динамический диапазон (ДД)
современного цифрового фотоаппарата?

В первую очередь динамический диапазон фотоаппарата зависит от характеристик матрицы. Я умышленно не называю конкретные характеристики матрицы потому, что во-первых - это слишком сложно для начинающего фотографа, а во-вторых - нужно ли фотографу это знать вообще? Понятно, что любому фотографу хочется заполучить фотоаппарат с уникально широким ДД, однако каждый производитель фотоаппаратов всячески расхваливает свою продукцию, но убедительных сравнительных тестов я пока нигде не нашёл...

А насколько вообще объективны и важны подобные тесты и сравнения? Полагаю, что во времена рыночной экономики с её жесткой конкуренцией в одной ценовой категории динамический диапазон матриц цифровых фотоаппаратов от разных производителей очень похожи, впрочем как и другие параметры.

Заметить разницу без использования специального оборудования практически нереально, а вашего зрителя прежде всего интересует визуальное восприятие вашего фото-шедевра, но никак уж не характеристики вашего фотоаппарата и, уж тем более, динамический диапазон матрицы, о котором ваш зритель даже и не догадывается... Если я не прав - киньте в меня камень:о)

Но всё-таки, что же делать фотографу, ведь количество сюжетов, укладывающихся в динамический диапазон современных цифровых фотоаппаратов очень мал и перед фотографом всегда стоит выбор - чем пожертвовать при фотосъёмке: деталями в тенях или в ярко освещённых областях кадра?

Пословица о том, что красота требует жертв здесь абсолютно неприемлема - часто смертельно трудно выбрать "жертву" без потери замысла... :о(

Взгляните хотя бы на эти фотографии, абсолютно не претендующие на роль шедевра, но сделанные в одно и тоже время, одним и одним и тем же фотоаппаратом с применением эксповилки, чтобы проиллюстрировать недостаточность ДД при съёмке самого обычного сюжета:

Яркость объектов в кадре на обоих фотографиях не уместилась в ДД матрицы фотоаппарата

Оказывается, в не самый яркий солнечный день (на небе таки есть облака) нелегко получить правильно экспонированный фото-снимок: выбирай фотограф, что тебе важнее - небо или горы? - и всё это из-за слишком узкого динамического диапазона современных цифровых фотоаппаратов:о(

Как расширить динамический диапазон

Конечно, помня о динамическом диапазоне, можно сделать побольше дублей с разной экспозицией, а потом выбрать лучший... но никто не гарантирует, что этот приём сработает - проблема то не в неправильности экспозиции, а в её большой разнице на разных участках кадра! Да и сюжет ждать не будет, особенно если объект съёмки двигается...

Но выход всё же есть: нам поможет...компьютер. Это ещё один камень в сторону противников компьютерной обработки фотографии. Отлично, если ваш фотоаппарат может снимать в RAW формате. Из одного RAW файла можно получить несколько JPEG файлов, каждый из которых будет отвечать за свой участок изображения. не составит большого труда.

Но даже при съёмке в JPEG формате, не всё потеряно. При съёмке пейзажа применяйте , желательно совместно со штативом - это позволит избежать проблем с совмещением разных кадров. Иначе вам придётся потратить достаточно времени, чтобы отретушировать границы переходов частей фотографии.

Если вы фотографировали без эксповилки - можно попробовать сделать несколько дублей исходной фотографии , а потом уже склеить полученные файлы. Здесь главное не перестараться, иначе результат может сильно отличаться от реального изображения.