Основные показатели качества воды. Щелочность воды Определение общей щелочности воды

Щелочность воды определяются присутствием соединений, взаимодействующих с сильными кислотами. Это могут быть свободные гидроксиды (в производственных сточных водах) или соли, образованные слабыми кислотами и сильными основаниями (например, гидрокарбонаты, карбонаты, силикаты, сульфиды, ацетаты щелочных металлов). Щелочность, обусловленная наличием растворимых гидроксидов (ионами ОН -), называется гидратной щелочностью.

В природных водах щелочность обычно вызывается гидрокарбонатами НСО 3 - (гидрокарбонатная), в щелочных водах – также и карбонатами СО 3 2- (карбонатная).

Щелочность воды характеризуется количеством кислоты, необходимым для нейтрализации 1 л воды. Выражается она в мг-экв/л.

Различают свободную и общую щелочностью воды. Если рН исследуемой воды более 8,3, то считается, что вода имеет свободную щелочность. Ее величина определяется количеством кислоты, необходимым для нейтрализации компонентов щелочности (ОН - , SiO 3 -2 . CO 3 -2 и др.) до достижения величины рН исследуемой воды до 4,5 (или по изменению окраски метилоранжа). Если рН воды меньше 4,5, то щелочность воды принимается равной нулю. Считается, что воды, имеющие величину рН<8,3, не содержат свободной щелочности.

Определение щелочности воды проводится непосредственно после отбора пробы или не позднее 24 часов при условии хранения воды в закрытой посуде, заполненной под пробку.

Затруднения при проведении анализа и получение неточных результатов может быть вызвано наличием взвешенных веществ, свободной углекислоты, хлора и гипохлоритов, соединений, обуславливающих цветность воды. Мешающее влияние взвешенных веществ, устраняется фильтрованием воды. Гипохлориты и свободный хлор вызывают обесцвечивание кислотно-щелочных индикаторов, поэтому они предварительно восстанавливаются 0,1н раствором тиосульфата натрия, взятом в эквивалентном количестве. Иногда для удаления гипохлоритов используют 3%-ный раствор пероксида водорода. Цветность воды может быть снижена при фильтровании ее через слой активированного угля или макропористого анионита. Свободный углекислый газ удаляется путем продувания воздуха через анализируемую воду. Если в воде наряду с гидрокарбонатами в заметном количестве присутствуют гидросиликаты, силикаты, гидросульфиты, сульфиды или другие соединения, вызывающие щелочность воды, то для вычислений карбонатной (гидрокарбонатной) щелочности необходимо вычесть из полученного результата данные, полученные при определении этих компонентов (в мг-экв/л). Для вод с малой величиной щелочности для получения более точного результата (менее 0,2 мг-экв/л) необходимо использовать 0,05 н растворы кислот (соляной или серной).

Определение щелочности воды может проводиться объемным методом нейтрализации и электрометрическим (по величине рН).

Щелочность воды – это общее содержание в воде веществ, обуславливающих при диссоциации или в результате гидролиза повышенную концентрацию ионов ОН - .

В исходной воде щелочность обычно связана с присутствием ионов . В умягченной и котловой воде, кроме перечисленных веществ, щелочность обусловливается также ионами В зависимости от того, какой анион присутствует в воде , щелочность называется соответственно бикарбонатной Щ б, карбонатной Щ к или гидратной Щ г.

Большая щелочность воды определяется количеством соляной кислоты, затраченной на титрование анализируемой пробы воды (100 мл пробы) в присутствии индикатора фенолфталеина (I этап) и метилоранжа (II этап) 0,1 н. Количество кислоты (мл), израсходованной при титровании, равно щелочности испытуемой воды при рН = 3...4 .

Малая щелочность воды определяется путем титрования 100 мл пробы в присутствии фенолфталеина (I этап) и метилрота или смешанного индикатора (II этап) 0,01 н. раствором серной или соляной кислоты. Величина щелочности при этом определяется по формуле:

где п – количество израсходованного 0,01 н. раствора кислоты, мл.

Анализы по определению отдельных форм щелочности основаны на том, что при титровании пробы воды сильной кислотой, реакции, протекающие между кислотой и различными анионами, обусловливающими форму щелочности, заканчиваются при различных значениях рН раствора. Титрование проводится в присутствии двух индикаторов, каждый из которых рассчитан на определенный диапазон значений рН. Одним индикатором является метилоранж, окраска которого изменяется на желтую в кислой среде при рН=3...4, вторым - фенолфталеин, окраска которого изменяется на розовую в щелочной среде при рН > 8,4. Следует особо отметить, что значение рН=8,4 имеют растворы чистых гидрокарбонатов (НСО3), постоянно присутствующих в водах. При анализе пробы воды на первом этапе используется фенолфталеин, а на втором - метилоранж.

Оценка отдельных форм щелочности производится в соответствии с полученными при титровании данными. При этом возможны следующие случаи:

1) фенолфталеин не дает розового окрашивания, т.е. Ф = 0, где Ф - расход соляной кислоты, пошедшей на титрование пробы, окрашенной фенолфталеином, мл. Метилоранж дает желтое окрашивание пробы, которая затем титруется соляной кислотой до изменения окраски. В этом случае в воде присутствуют только бикарбонаты (бикарбонатная щелочность) Щб, которая подсчитывается по формуле (1), где А = М, а М - расход кислоты на титрование пробы воды, окрашенной метилоранжем, мг-экв/л;

2) фенолфталеин дает розовое окрашивание, причем при титровании пробы оказалось, что 2Ф < М. В этом случае в воде присутствуют как бикарбонаты, так и карбонаты. Расчет Щб производится по формуле (1), где А = М - 2Ф, для расчета Щк следует принять А = 2Ф;

3) фенолфталеин дает розовое окрашивание, причем 2Ф = М. В этом случае в воде присутствуют только карбонаты; для расчета Щк в формулу (1) следует подставить А = 2Ф;

4) фенолфталеин дает розовое окрашивание, причем 2Ф>М. В этом случае в воде присутствуют карбонаты и гидраты. Для расчета Щк в формулу (1) следует подставить А=2(М-Ф), а для расчета Щг - А = (2Ф - М);

5) фенолфталеин дает розовое окрашивание, причем М = 0 (т.е. после обесцвечивания фенолфталеина дальнейшее увеличение объема метилоранжа сразу вызывает оранжевую окраску пробы воды). В этом случае присутствуют только гидраты; для расчета Щг в формулу (1) следует подставить А = Ф. При Кн = 0,1 мг-экв/л и V = 100 мл для определения формы и численного значения щелочности удобно пользоваться таблицей.

Когда заходит речь о качестве питьевой воды, мы, прежде всего, обращаем внимание на отсутствие вредных примесей, цвет, запах и т.п. А вот о важности такого показателя как щёлочность воды знают далеко не все. В этой статье мы попробуем разобраться, почему норма щёлочности воды так важна для нашего с вами здоровья, как она определяется и как достичь оптимальных показателей щёлочности воды.

Определение щёлочности: немного теории

Для начала попробуем разобраться, что же собственно такое «щёлочность воды». Справочная литература предлагает такое определение щёлочности: это общее число содержащихся в воде гидроксильных ионов, а также анионов слабых кислот. Щёлочность воды может быть гидратная, карбонатная, бикарбонатная, в зависимости от наличия в ней определённых веществ. Также следует разграничить понятие «щёлочность воды» и её водородный показатель (pH). Он показывает концентрацию в воде свободных ионов водорода. Если pH низкий (< 7), то мы говорим о кислой среде, если высокий (>7) – о щелочной. Взаимосвязь pH и щёлочности прямопропорциональна: чем больше щёлочность воды, тем выше показатель pH. Щёлочность измеряется в ммоль/дм3, а рН – просто число единиц.

Согласно Государственным санитарным нормам, оптимальный показатель pH для питьевой воды от 6,5 до 8,5 единиц. Это совпадает с требованиями, применяющимися для контроля качества питьевой воды в США. Нормативы ЕС в этом вопросе отличаются несущественно (от 6,5 до 9,5). Показатель дистиллированной воды – 7 единиц. Это условно нейтральная вода. Показатели pH питьевой воды строго контролируются во всех странах.

А вот нормы щёлочности воды украинскими Государственными санитарными нормами не регулируются. Хотя и учитываются на предприятиях водоснабжения для правильного расчета реагентов, которые используют для обработки воды.

Относительно расчёта щёлочности воды стоит отметить, что оптимальные нормы немного отличаются в зависимости от того, для каких нужд используется вода.

Значение нормы щёлочности воды

Давайте попробуем разобраться, почему такое большое значение придаётся нормам щёлочности воды? Оказывается, от щёлочности воды напрямую зависит состояние нашего организма. Оптимальная норма щёлочности воды поможет наладить такие функции организма:

  • обменные процессы
  • восстановление микрофлоры кишечника
  • активизация мозговой деятельности за счёт обогащения мозга кислородом
  • укрепление иммунитета

Это неудивительно, поскольку в самом организме человека преобладают нейтральные или слабощелочные жидкости. Интересно, что pH человеческой крови составляет 7,43 (т.е. практически нейтрален).

Поэтому очень важным является определение щёлочности питьевой воды и контроль этих показателей.

Японские учёные установили, что если человек постоянно употребляет воду щёлочностью 6,5 – 7, то продолжительность жизни увеличивается на 20 – 30%. Дело в том, что кислая среда (низкая щёлочность воды) создаёт идеальные условия для развития различных болезней.

Для поддержания нормального кислотно-щелочного баланса и хорошего самочувствия важно «не закислять» организм. Но проблема в том, что большинство продуктов имеют кислую среду. А значит, для поддержания баланса важно пить воду, именно она способствует тому, что кровь может переносить больше кислорода. Но полезна не всякая вода. В первую очередь нужно обращать внимание на её щёлочность. Лучше, если она близка к нейтральной. Государственные санитарные нормы регламентируют щёлочность питьевой бутилированной воды и воды из бюветов на уровне 6,5 ммоль/дм3. Норма щёлочности воды, поступающей в централизованные водопроводные системы, регулируется ещё на этапе водоподготовки. Повышенная кислотность может наблюдаться в сильно загрязнённых природных водах (например, после сброса отходов промышленных предприятий, когда в воду попадает большое количество сильных кислот и их солей).

Кстати, вода повышенной щёлочности также не слишком полезна. Так, после водных процедур в такой воде может появляться:

  • зуд на коже
  • высыпания
  • раздражения на слизистых

Расчёт щёлочности воды и регулирование уровня рН

В разных регионах уровень pH водопроводной воды колеблется от 5,5 до 10 единиц. При необходимости этот показатель можно и нужно регулировать. Для измерения рН в домашних условиях можно использовать специальные тестеры. А вот для определения щёлочности воды понадобиться сдать образцы на в специализированную лабораторию. После того, как вы получите результаты исследования, специалисты «УкрХимАнализ» дадут необходимые рекомендации. Если вода имеет повышенную щёлочность, то эффективным способом её снижения может стать фильтр. Хорошо справляются с данной проблемой, в частности, системы обратного осмоса. Они помогают не только снизить щёлочность воды, но и нормализовать её состав в целом, уменьшить минерализацию и жёсткость.

Жесткость воды зависит от присутствия в ней растворимых солей кальция и магния. Различают карбонатную (устранимую) жесткость и постоянную. Карбонатная жесткость обусловлена присутствием в растворе бикарбонатов кальция и магния Са(НСО 3) 2 и Mg (НСО 3) 2 . Постоянная жесткость воды обусловлена присутствием в воде других растворимых солей кальция и магния (сульфатов). Сумма постоянной и карбонатной жесткости составляет общую жесткость воды. Общая щелочность воды обусловлена присутствием ионов ОН - , СОз 2- , НСОз - .

Определение основано на титровании раствора, содержащего NaOH и Na 2 CO 3 , стандартным раствором хлорводородной кислоты с двумя индикаторами - фенолфталеином и метиловым оранжевым, применяемыми последовательно. При титровании раствора, содержащего эти вещества, хлорводородной кислотой в присутствии фенолфталеина происходят следующие реакции:

HCl+NaOH= NaCl +H 2 O

HCl+ Na 2 CO 3 =NaCl + NaHCO 3

Следовательно по фенолфталеину оттитровывается вся щелочь и карбонат до бикарбоната и обесцвечивание фенолфталеина указывает на то, что обе реакции полностью завершились, и вместо исходных веществ в растворе имеются NaCl и NaHCO 3 . Бесцветный раствор, содержащий эти продукты реакции, имеет слабощелочную реакцию, при добавлении метилового оранжевого он окрашивается в желтый цвет, и если продолжать титрование кислотой, будет происходить следующая реакция:

HCl + NaHCO 3 = NaCl+H 2 CO 3 = NaCl+CO 2 +H 2 O

Следовательно, по метиловому оранжевому оттитровывается бикарбонат. Изменение желтой окраски на розовую свидетельствует о том, что реакция полностью закончилась.

Разность объемов хлорводородной кислоты (V HCl м-о - V HCl ф-ф), затраченных на титрование смеси с метиловым оранжевым и фенолфталеином, соответствует половине количества карбоната натрия, присутствующего в растворе. Удваивая эту разность, получают объем кислоты , эквивалентный количеству всего карбоната. Вычитая указанную разность из объема V HCl ф-ф, израсходованного на титрование смеси с фенолфталеином, находят объем кислоты, эквивалентный количеству гидроксида натрия.

У подавляющего большинства природных вод ионы НСОз - связаны только с ионами кальция и магния. Поэтому в тех случаях, когда щелочность по фенолфталеину равна нулю, можно считать, что общая щелочность воды равна ее карбонатной жесткости.

Порядок выполнения работы. 1. Из общего раствора объемом 100 мл исследуемой воды, отбирают 20 мл пипеткой или цилиндром в коническую колбу вместимостью 100 мл.

2. Добавляют 2-3 капли раствора фенолфталеина и быстро титруют кислотой. До 12-15 мл титрование проводят быстро, перемешивая раствор, а под конец титрант добавляют по каплям до обесцвечивания. Записывают отсчет по бюретке (V HCl ф-ф),

3. Прибавляют в колбу 2 капли метилового оранжевого и продолжают титрование до перехода окраски из желтой в оранжевую. Производят второй отсчет по бюретке (V HCl м-о).

Мутность – показатель качества воды, обусловленный присутствием в воде нерастворенных и коллоидных веществ неорганического и органического происхождения. Причиной мутности поверхностных вод являются илы, кремниевая кислота, гидроокиси железа и алюминия, органические коллоиды, микроорганизмы и планктон. В грунтовых водах мутность вызвана преимущественно присутствием нерастворенных минеральных веществ, а при проникании в грунт сточных вод – также и присутствием органических веществ. В России мутность определяют фотометрическим путем сравнения проб исследуемой воды со стандартными суспензиями. Результат измерений выражают в мг/дм3 при использовании основной стандартной суспензии каолина или в ЕМ/дм3 (единицы мутности на дм3) при использовании основной стандартной суспензии формазина. Последнюю единицу измерения называют также Единица Мутности по Формазину (ЕМФ) или в западной терминологии FTU (Formazine Turbidity Unit). 1FTU=1ЕМФ=1ЕМ/ дм3. В последнее время в качестве основной во всем мире утвердилась фотометрическая методика измерения мутности по формазину, что нашло свое отражение в стандарте ISO 7027 (Water quality - Determination of turbidity). Согласно этому стандарту, единицей измерения мутности является FNU (Formazine Nephelometric Unit). Агентство по Охране Окружающей Среды США (U.S. EPA) и Всемирная Организация Здравоохранения (ВОЗ) используют единицу измерения мутности NTU (Nephelometric Turbidity Unit). Соотношение между основными единицами измерения мутности следующее: 1 FTU(ЕМФ)=1 FNU=1 NTU.

ВОЗ по показаниям влияния на здоровье мутность не нормирует, однако с точки зрения внешнего вида рекомендует, чтобы мутность была не выше 5 NTU (нефелометрическая единица мутности), а для целей обеззараживания – не более 1 NTU.

Мера прозрачности – высота столба воды, при которой можно наблюдать опускаемую в воду белую пластину определенных размеров (диск Секки) или различать на белой бумаге шрифт определенного размера и типа (шрифт Снеллена). Результаты выражаются в сантиметрах.

Характеристика вод по прозрачности (мутности)

Цветность

Цветность – показатель качества воды, обусловленный главным образом присутствием в воде гуминовых и фульфовых кислот, а также соединений железа (Fe3+). Количество этих веществ зависит от геологических условий в водоносных горизонтах и от количества и размеров торфяников в бассейне исследуемой реки. Так, наибольшую цветность имеют поверхностные воды рек и озер, расположенных в зонах торфяных болот и заболоченных лесов, наименьшую – в степях и степных зонах. Зимой содержание органических веществ в природных водах минимальное, в то время как весной в период половодья и паводков, а также летом в период массового развития водорослей – цветения воды - оно повышается. Подземные воды, как правило, имеют меньшую цветность, чем поверхностные. Таким образом, высокая цветность является тревожным признаком, свидетельствующим о неблагополучии воды. При этом очень важно выяснить причину цветности, так как методы удаления, например, железа и органических соединений отличаются. Наличие же органики не только ухудшает органолептические свойства воды, приводит к возникновению посторонних запахов, но и вызывает резкое снижение концентрации растворенного в воде кислорода, что может быть критично для ряда процессов водоочистки. Некоторые в принципе безвредные органические соединения, вступая в химические реакции (например, с хлором), способны образовывать очень вредные и опасные для здоровья человека соединения.

Цветность измеряется в градусах платино-кобальтовой шкалы и колеблется от единиц до тысяч градусов – Таблица 2.

Характеристика вод по цветности
Вкус и привкус
Вкус воды определяется растворенными в ней веществами органического и неорганического происхождения и различается по характеру и интенсивности. Различают четыре основных вида вкуса: соленый, кислый, сладкий, горький. Все другие виды вкусовых ощущений называются привкусами (щелочной, металлический, вяжущий и т.п.). Интенсивность вкуса и привкуса определяют при 20 °С и оценивают по пятибалльной системе, согласно ГОСТ 3351-74*.

Качественную характеристику оттенков вкусовых ощущений – привкуса – выражают описательно: хлорный, рыбный, горьковатый и так далее. Наиболее распространенный соленый вкус воды чаще всего обусловлен растворенным в воде хлоридом натрия, горький – сульфатом магния, кислый – избытком свободного диоксида углерода и т.д. Порог вкусового восприятия соленых растворов характеризуется такими концентрациями (в дистиллированной воде), мг/л: NaCl – 165; CaCl2 – 470; MgCl2 – 135; MnCl2 – 1,8; FeCl2 – 0,35; MgSO4 – 250; CaSO4 – 70; MnSO4 – 15,7; FeSO4 – 1,6; NaHCO3 – 450.

По силе воздействия на органы вкуса ионы некоторых металлов выстраиваются в следующие ряды:

O катионы: NH4+ > Na+ > K+; Fe2+ > Mn2+ > Mg2+ > Ca2+;

O анионы: ОН- > NO3- > Cl- > HCO3- > SO42- .

Характеристика вод по интенсивности вкуса

Интенсивность вкуса и привкуса

Характер появления вкуса и привкуса

Оценка интенсивности, балл

Вкус и привкус не ощущаются

Очень слабая

Вкус и привкус не ощущаются потребителем, но обнаруживаются при лабораторном исследовании

Вкус и привкус замечаются потребителем, если обратить на это его внимание

Заметная

Вкус и привкус легко замечаются и вызывают неодобрительные отзывы о воде

Отчетливая

Вкус и привкус обращают на себя внимание и заставляют воздержаться от питья

Очень сильная

Вкус и привкус настолько сильные, что делают воду непригодной к употреблению

Запах
Запах – показатель качества воды, определяемый органолептическим методом с помощью обоняния на основании шкалы силы запаха. На запах воды оказывают влияние состав растворенных веществ, температура, значения рН и целый ряд прочих факторов. Интенсивность запаха воды определяют экспертным путем при 20 °С и 60 °С и измеряют в баллах, согласно требованиям.

Следует также указывать группу запаха по следующей классификации:

По характеру запахи делят на две группы:

  • естественного происхождения (живущие и отмершие в воде организмы, загнивающие растительные остатки и др.)
  • искусственного происхождения (примеси промышленных и сельскохозяйственных сточных вод).
Запахи второй группы (искусственного происхождения) называют по определяющим запах веществам: хлорный, бензиновый и т.д.
Запахи естественного происхождения

Обозначение запаха

Характер запаха

Примерный род запаха

Ароматический

Огуречный, цветочный

Болотный

Илистый, тинистый

Гнилостный

Фекальный, сточный

Древесный

Запах мокрой щепы, древесноый коры

Землистый

Прелый, запах свежевспаханной земли, глинистый

Плесневый

Затхлый, застойный

Запах рыбьегожира, рыбный

Сероводородный

Запах тухлых яиц

Травянистый

Запах скошенной травы, сена

Неопределенный

Запахи естественного происхождения, не попадающие под предыдущие определения


Интенсивность запаха по ГОСТ 3351-74* оценивают в шестибальной шкале – см. следующую страницу.
Характеристика вод по интенсивности запаха

Интенсивность запаха

Характер появления запаха

Оценка интенсивности, балл

Запах не ощущаются

Очень слабая

Запах не ощущаются потребителем, но обнаруживаются при лабораторном исследовании

Запах замечаются потребителем, если обратить на это его внимание

Заметная

Запах легко замечаются и вызывают неодобрительные отзывы о воде

Отчетливая

Запах обращают на себя внимание и заставляют воздержаться от питья

Очень сильная

Запах настолько сильные, что делают воду непригодной к употреблению

Водородный показатель (рН)
Водородный показатель (рН) - характеризует концентрацию свободных ионов водорода в воде и выражает степень кислотности или щелочности воды (соотношение в воде ионов Н+ и ОН- образующихся при диссоциации воды) и количественно определяется концентрацией ионов водорода pH = - Ig

Если в воде пониженное содержание свободных ионов водорода (рН>7) по сравнению с ионами ОН-, то вода будет иметь щелочную реакцию, а при повышенном содержании ионов Н+ (рН<7)- кислую. В идеально чистой дистиллированной воде эти ионы будут уравновешивать друг друга. В таких случаях вода нейтральна и рН=7. При растворении в воде различных химических веществ этот баланс может быть нарушен, что приводит к изменению уровня рН.

Определение pH выполняется колориметрическим или электрометрическим методом. Вода с низкой реакцией рН отличается коррозионностью, вода же с высокой реакцией рН проявляет склонность к вспениванию.

В зависимости от уровня рН воды можно условно разделить на несколько групп:

Характеристика вод по рН

Контроль над уровнем рН особенно важен на всех стадиях водоочистки, так как его "уход" в ту или иную сторону может не только существенно сказаться на запахе, привкусе и внешнем виде воды, но и повлиять на эффективность водоочистных мероприятий. Оптимальная требуемая величина рН варьируется для различных систем водоочистки в соответствии с составом воды, характером материалов, применяемых в системе распределения, а также в зависимости от применяемых методов водообработки.

Обычно уровень рН находится в пределах, при которых он непосредственно не влияет на потребительские качества воды. Так, в речных водах pH обычно находится в пределах 6.5-8.5, в атмосферных осадках 4.6-6.1, в болотах 5.5-6.0, в морских водах 7.9-8.3. Поэтому ВОЗ не предлагает какой-либо рекомендуемой по медицинским показателям величины для рН. Вместе с тем известно, что при низком рН вода обладает высокой коррозионной активностью, а при высоких уровнях (рН>11) вода приобретает характерную мылкость, неприятный запах, способна вызывать раздражение глаз и кожи. Именно поэтому для питьевой и хозяйственно-бытовой воды оптимальным считается уровень рН в диапазоне от 6 до 9.

Кислотность
Кислотностью называют содержание в воде веществ, способных вступать в реакцию с гидроксид-ионами (ОН-). Кислотность воды определяется эквивалентным количеством гидроксида, необходимого для реакции.

В обычных природных водах кислотность в большинстве случаев зависит только от содержания свободного диоксида углерода. Естественную часть кислотности создают также гуминовые и другие слабые органические кислоты и катионы слабых оснований (ионы аммония, железа, алюминия, органических оснований). В этих случаях pH воды не бывает ниже 4.5.

В загрязненных водоемах может содержаться большое количество сильных кислот или их солей за счет сброса промышленных сточных вод. В этих случаях pH может быть ниже 4.5. Часть общей кислотности, снижающей pH до величин < 4.5, называется свободной.

Жесткость
Общая (полная) жесткость – свойство, вызванное присутствием растворенных в воде веществ, в основном - солей кальция (Ca2+) и магния (Mg2+), а также других катионов, которые выступают в значительно меньших количествах, таких как ионы: железа, алюминия, марганца (Mn2+) и тяжелых металлов (стронций Sr2+, барий Ba2+).

Но общее содержание в природных водах ионов кальция и магния несравнимо больше содержания всех других перечисленных ионов – и даже их суммы. Поэтому под жесткостью понимают сумму количеств ионов кальция и магния – общая жесткость, складывающаяся из значений карбонатной (временной, устраняемой кипячением) и некарбонатной (постоянной) жесткости. Первая вызвана присутствием в воде гидрокарбонатов кальция и магния, вторая наличием сульфатов, хлоридов, силикатов, нитратов и фосфатов этих металлов.

В России жесткость воды выражают в мг-экв/дм3 или в моль/л.

Карбонатная жесткость (временная) – вызвана присутствием растворенных в воде бикарбонатов, карбонатов и углеводородов кальция и магния. Во время нагревания бикарбонаты кальция и магния частично оседают в растворе в результате обратимых реакций гидролиза.

Некарбонатная жесткость (постоянная) – вызывается присутствием растворенных в воде хлоридов, сульфатов и силикатов кальция (не растворяются и не оседают в растворе во время нагревания воды).

Характеристика вод по значению общей жесткости

Группа вод

Еденица измерения, ммоль/л

Очень мягкая

Средней жесткости

Очень жесткая

Щелочность
Щелочностью воды называется суммарная концентрация содержащихся в воде анионов слабых кислот и гидроксильных ионов (выражена в ммоль/л), вступающих в реакцию при лабораторных исследованиях с соляной или серной кислотами с образованием хлористых или сернокислых солей щелочных и щелочноземельных металлов.

Различают следующие формы щелочности воды: бикарбонатная (гидрокарбонатная), карбонатная, гидратная, фосфатная, силикатная, гуматная – в зависимости от анионов слабых кислот, которыми обусловливается щелочность. Щелочность природных вод, рН которых обычно < 8,35, зависит от присутствия в воде бикарбонатов, карбонатов, иногда и гуматов. Щелочность других форм появляется в процессах обработки воды. Так как в природных водах почти всегда щелочность определяется бикарбонатами, то для таких вод общую щелочность принимают равной карбонатной жесткости.

Железо, марганец
Железо, марганец - в натуральной воде выступают преимущественно в виде углеводородов, сульфатов, хлоридов, гумусовых соединений и иногда фосфатов. Присутствие ионов железа и марганца очень вредит большинству технологических процессов, особенно в целлюлозной и текстильной промышленности, а также ухудшает органолептические свойства воды.

Кроме того, содержание железа и марганца в воде может вызывать развитие марганцевых бактерий и железобактерий, колонии которых могут быть причиной зарастания водопроводных сетей.

Хлориды
Хлориды – присутствие хлоридов в воде может быть вызвано вымыванием залежей хлоридов или же они могут появиться в воде вследствие присутствия стоков. Чаще всего хлориды в поверхностных водах выступают в виде NaCl, CaCl2 и MgCl2, причем, всегда в виде растворенных соединений.
Соединения азота
Соединения азота (аммиак, нитриты, нитраты) – возникают, главным образом, из белковых соединений, которые попадают в воду вместе со сточными водами. Аммиак, присутствующий в воде, может быть органического или неорганического происхождения. В случае органического происхождения наблюдается повышенная окисляемость.

Нитриты возникают, главным образом, вследствие окисления аммиака в воде, могут также проникать в нее вместе с дождевой водой вследствие редукции нитратов в почве.

Нитраты - это продукт биохимического окисления аммиака и нитритов или же они могут быть выщелочены из почвы.

Сероводород

O при pH < 5 имеет вид H2S;

O при pH > 7 выступает в виде иона HS-;

O при pH = 5: 7 может быть в виде, как H2S, так и HS-.

Воде. Они поступают в воду вследствие вымывания осадочных горных пород, выщелачивания почвы и иногда вследствие окисления сульфидов и серы – продуктов расклада белка из сточных вод. Большое содержание сульфатов в воде может быть причиной болезней пищеварительного тракта, а также такая вода может вызывать коррозию бетона и железобетонных конструкций.

Двуокись углерода

Сероводород придает воде неприятный запах, приводит к развитию серобактерий и вызывает коррозию. Сероводород, преимущественно присутствующий в подземных водах, может быть минерального, органического или биологического происхождения, причем в виде растворенного газа или сульфидов. То, под каким видом проявляется сероводород, зависит от реакции pH:

  • при pH < 5 имеет вид H2S;
  • при pH > 7 выступает в виде иона HS-;
  • при pH = 5: 7 может быть в виде, как H2S, так и HS-.
Сульфаты
Сульфаты (SO42-) – наряду с хлоридами являются наиболее распространенными видами загрязнения в воде. Они поступают в воду вследствие вымывания осадочных горных пород, выщелачивания почвы и иногда вследствие окисления сульфидов и серы – продуктов расклада белка из сточных вод. Большое содержание сульфатов в воде может быть причиной болезней пищеварительного тракта, а также такая вода может вызывать коррозию бетона и железобетонных конструкций.
Двуокись углерода
Двуокись углерода (CO2) – в зависимости от реакции pH воды может быть в следующих видах:
  • pH < 4,0 – в основном, как газ CO2;
  • pH = 8,4 – в основном в виде иона бикарбоната НСО3- ;
  • pH > 10,5 – в основном в виде иона карбоната CO32-.
Агрессивная двуокись углерода – это часть свободной двуокиси углерода (CO2), которая необходима для удержания растворенных в воде углеводородов от разложения. Она очень активна и вызывает коррозию металлов. Кроме того, приводит к растворению карбоната кальция СаСО3 в строительных растворах или бетоне и поэтому ее необходимо удалять из воды, предназначенной для строительных целей. При оценке агрессивности воды, наряду с агрессивной концентрацией двуокиси углерода, следует также учитывать содержание солей в воде (солесодержание). Вода с одинаковым содержанием агрессивного CO2, тем более агрессивна, чем выше ее солесодержание.
Растворенный кислород
Поступление кислорода в водоем происходит путем растворения его при контакте с воздухом (абсорбции), а также в результате фотосинтеза водными растениями. Содержание растворенного кислорода зависит от температуры, атмосферного давления, степени турбулизации воды, минерализации воды и др. В поверхностных водах содержание растворенного кислорода может колебаться от 0 до 14 мг/л. В артезианской воде кислород практически отсутствует.

Относительное содержание кислорода в воде, выраженное в процентах его нормального содержания и называется степенью насыщения кислородом. Этот параметр зависит от температуры воды, атмосферного давления и уровня минерализации. Вычисляется по формуле: M = (ax0,1308x100)/NxP, где

М – степень насыщения воды кислородом, %;

А – концентрация кислорода, мг/дм3;

Р – атмосферное давление в данной местности, МПа.

N – нормальная концентрация кислорода при данной температуре и общем давлении 0,101308 МПа, приведенная в следующей таблице:

Растворимость кислорода в зависимости от температуры воды

Температура воды, °С

Окисляемость
Окисляемость – это показатель, характеризующий содержание в воде органических и минеральных веществ, окисляемых сильным окислителем. Окисляемость выражается в мгO2 необходимого на окисление этих веществ, содержащихся в 1 дм3 исследованной воды.

Различают несколько видов окисляемости воды: перманганатную (1 мг KMnO4 соответствует 0,25 мг O2), бихроматную, иодатную, цериевую. Наиболее высокая степень окисления достигается бихроматным и иодатным методами. В практике водоочистки для природных малозагрязненных вод определяют перманганатную окисляемость, а в более загрязненных водах – как правило, бихроматную окисляемость (называемую также ХПК – химическое потребление кислорода). Окисляемость является очень удобным комплексным параметром, позволяющим оценить общее загрязнение воды органическими веществами. Органические вещества, находящиеся в воде весьма разнообразны по своей природе и химическим свойствам. Их состав формируется как под влиянием биохимических процессов протекающих в водоеме, так и за счет поступления поверхностных и подземных вод, атмосферных осадков, промышленных и хозяйственно-бытовых сточных вод. Величина окисляемости природных вод может варьироваться в широких пределах от долей миллиграммов до десятков миллиграммов О2 на литр воды.

Поверхностные воды имеют более высокую окисляемость, а значит в них содержится высокие концентрации органических веществ по сравнению с подземными. Так, горные реки и озера характеризуются окисляемостью 2-3 мг О2/дм3, реки равнинные – 5-12 мг О2/дм3, реки с болотным питанием – десятки миллиграммов на 1 дм3.

Подземные же воды имеют в среднем окисляемость на уровне от сотых до десятых долей миллиграмма О2/дм3 (исключения составляют воды в районах нефтегазовых месторождений, торфяников, в сильно заболоченных местностях, подземных вод северной части РФ).

Электропроводность
Электропроводность – это численное выражение способности водного раствора проводить электрический ток. Электрическая проводимость природной воды зависит в основном от степени минерализации (концентрации растворенных минеральных солей) и температуры. Благодаря этой зависимости, по величине электропроводности можно с определенной степенью погрешности судить о минерализации воды. Такой принцип измерения используется, в частности, в довольно распространенных приборах оперативного измерения общего солесодержания (так называемых TDS-метрах).

Дело в том, что природные воды представляют собой растворы смесей сильных и слабых электролитов. Минеральную часть воды составляют преимущественно ионы натрия (Na+), калия (K+), кальция (Ca2+), хлора (Cl–), сульфата (SO42–), гидрокарбоната (HCO3–).

Этими ионами и обуславливается в основном электропроводность природных вод. Присутствие же других ионов, например трехвалентного и двухвалентного железа (Fe3+ и Fe2+), марганца (Mn2+), алюминия (Al3+), нитрата (NO3–), HPO4–, H2PO4– и т.п. не столь сильно влияет на электропроводность (конечно при условии, что эти ионы не содержатся в воде в значительных количествах, как например, это может быть в производственных или хозяйственно-бытовых сточных водах). Погрешности же измерения возникают из-за неодинаковой удельной электропроводимости растворов различных солей, а также из-за повышения электропроводимости с увеличением температуры. Однако, современный уровень техники позволяет минимизировать эти погрешности, благодаря заранее рассчитанным и занесенным в память зависимостям.

Электропроводность не нормируется, но величина 2000 мкС/см примерно соответствует общей минерализации в 1000 мг/л.

Окислительно-восстановительный потенциал (редокс-потенциал, Eh)
Окислительно-восстановительный потенциал (мера химической активности) Eh вместе с рН, температурой и содержанием солей в воде характеризует состояние стабильности воды. В частности этот потенциал необходимо учитывать при определении стабильности железа в воде. Eh в природных водах колеблется в основном от -0,5 до +0,7 В, но в некоторых глубоких зонах Земной коры может достигать значений минус 0,6 В (сероводородные горячие воды) и +1,2 В (перегретые воды современного вулканизма).

Подземные воды классифицируются:

  • Eh > +(0,1–1,15) В – окислительная среда; в воде присутствует растворенный кислород, Fe3+, Cu2+, Pb2+, Mo2+ и др.
  • Eh – 0,0 до +0,1 В – переходная окислительно-восстановительная среда, характеризуется неустойчивым геохимическим режимом и переменным содержанием кислорода и cероводорода, а также слабым окислением и слабым восстановлением разных металлов;
  • Eh < 0,0 – восстановительная среда; в воде присутствуют сероводород и металлы Fe2+, Mn2+, Mo2+ и др.
Зная значения рН и Eh, можно по диаграмме Пурбэ установить условия существования соединений и элементов Fe2+, Fe3+, Fe(ОН)2, Fe(ОН)3, FeСО3, FeS, (FeOH)2+.