Химические свойства аминов таблица. Амины

Амины вошли в нашу жизнь совершенно неожиданно. Еще недавно это были ядовитые вещества, столкновение с которыми могло привести к смерти. И вот, спустя полтора столетия, мы активно пользуемся синтетическими волокнами, тканями, строительными материалами, красителями, в основе которых лежат амины. Нет, они не стали безопаснее, просто люди смогли их "приручить" и подчинить, извлекая для себя определенную пользу. О том, какую именно, и поговорим далее.

Определение

Для качественного и количественного определение анилина в растворах или соединениях используется реакция с в конце которой на дно пробирки выпадает белый осадок в виде 2,4,6-триброманилина.

Амины в природе

Амины встречаются в природе повсеместно в виде витаминов, гормонов, промежуточных продуктов обмена, есть они и в организме животных и в растениях. Кроме того, при гниении живых организмов также получаются средние амины, которые в жидком состоянии распространяют неприятный запах селедочного рассола. Широко описанный в литературе «трупный яд» появился именно благодаря специфическому амбре аминов.

Длительное время рассматриваемые нами вещества путали с аммиаком из-за похожего запаха. Но в середине девятнадцатого века французский химик Вюрц смог синтезировать метиламин и этиламин и доказать, что при сгорании они выделяют углеводород. Это было принципиальным отличием упомянутых соединений от аммиака.

Получение аминов в промышленных условиях

Так как атом азота в аминах находится в низшей степени окисления, то восстановление азотосодержащих соединений является наиболее простым и доступным способом их получения. Именно он широко распространен в промышленной практике из-за своей дешевизны.

Первый метод представляет собой восстановление нитросоединений. Реакция, во время которой образуется анилин, носит название ученого Зинина и была проведена в первый раз в середине девятнадцатого века. Второй способ заключается в восстановлении амидов при помощи алюмогидрида лития. Из нитрилов тоже можно восстановить первичные амины. Третий вариант - реакции алкилирования, то есть введение алкильных групп в молекулы аммиака.

Применение аминов

Сами по себе, в виде чистых веществ, амины используются мало. Один из редких примеров - полиэтиленполиамин (ПЭПА), который в бытовых условиях облегчает затвердение эпоксидной смолы. В основном первичный, третичный или вторичный амин - это промежуточный продукт в производстве различных органических веществ. Самым востребованным является анилин. Он - основа большой палитры анилиновых красителей. Цвет, который получится в конце, зависит непосредственно от выбранного сырья. Чистый анилин дает синий цвет, а смесь анилина, орто- и пара-толуидина будет красной.

Алифатические амины нужны для получения полиамидов, таких как нейлон и другие Они применяются в машиностроении, а также в производстве канатов, тканей и пленок. Кроме того, алифатические диизоцинаты используются в изготовлении полиуретанов. Из-за своих исключительных свойств (легкость, прочность, эластичность и способность прикрепляться к любым поверхностям) они востребованы в строительстве (монтажная пена, клей) и в обувной промышленности (противоскользящая подошва).

Медицина - еще одна сфера, где применяются амины. Химия помогает синтезировать из них антибиотики группы сульфаниламидов, которые успешно применяют в качестве препаратов второй линии, то есть резервной. На случай, если у бактерий разовьется устойчивость к основным лекарствам.

Вредное воздействие на организм человека

Известно, что амины - это весьма токсичные вещества. Вред здоровью может нанести любое взаимодействие с ними: вдыхание паров, контакт с открытой кожей или попадание соединений внутрь организма. Смерть наступает от нехватки кислорода, так как амины (в частности, анилин) связываются с гемоглобином крови и не дают ему захватывать молекулы кислорода. Тревожными симптомами являются одышка, посинение носогубного треугольника и кончиков пальцев, тахипноэ (учащенное дыхание), тахикардия, потеря сознания.

В случае попадания этих веществ на оголенные участки тела необходимо быстро убрать их ватой, предварительно смоченной в спирте. Делать это надо максимально аккуратно, чтобы не увеличить площадь загрязнения. Если появятся симптомы отравления - обязательно нужно обратиться к врачу.

Алифатические амины - это яд для нервной и сердечно-сосудистой систем. Они могут вызвать угнетение функций печени, ее дистрофию и даже онкологические заболевания мочевого пузыря.

Амины - органические производные аммиака, в молекуле которого один, два или все три атома водорода замещены углеродным остатком.

Обычно выделяют три типа аминов:

Амины, в которых аминогруппа связана непо­средственно с ароматическим кольцом, называют­ся ароматическими аминами.

Простейшим представителем этих соединений является аминобензол, или анилин:

Основной отличительной чертой электронного строения аминов является наличие у атома азота, входящего в функциональную группу, неподеленной электронной пары. Это приводит к тому, что амины проявляют свойства оснований.

Существуют ионы, которые являются продук­том формального замещения на углеводородный радикал всех атомов водорода в ионе аммония:

Эти ионы входят в состав солей, похожих на соли аммония. Они называются четвертичными аммонийными солями.

Изомерия и номенклатура аминов

1. Для аминов характерна структурная изомерия:

а) изомерия углеродного скелета:

б) изомерия положения функциональной группы:

2. Первичные, вторичные и третичные амины изомерны друг другу (межклассовая изомерия):

Как видно из приведенных примеров, для то­го чтобы назвать амин, перечисляют заместители, связанные с атомом азота (по порядку старшин­ства), и добавляют суффикс —амин.

Физические свойства аминов

Простейшие амины (метиламин, диметиламин, триметиламин) - газообразные вещества. Остальные низшие амины - жидкости, которые хорошо рас­творяются в воде. Имеют характерный запах, напоми­нающий запах аммиака.

Первичные и вторичные амины способны образовывать водородные связи. Это приводит к заметному повышению их температур кипения по сравнению с соединениями, имеющими ту же молекулярную массу, но не способными образовывать водородные связи.

Анилин - маслянистая жидкость, ограниченно растворимая в воде, кипящая при температуре 184 °С.

Химические свойства аминов

Химические свойства аминов определяются в основном наличием у атома азота неподеленной электронной пары.

Амины как основания. Атом азота аминогруппы, подобно атому азота в молекуле аммиака, за счет не­поделенной пары электронов может образовывать ковалентную связь по донорно-акцепторному меха­низму, выступая в роли донора. В связи с этим ами­ны, как и аммиак, способны присоединять катион водорода, т. е. выступать в роли основания:

1. Реакция амионов с водой приводит к образо­ванию гидроксид-ионов:

2. Реакция с кислотами . Аммиак, реагируя с кислотами, образует соли аммония. Амины так­же способны вступать в реакцию с кислотами:

Основные свойства алифатических аминов вы­ражены сильнее, чем у аммиака. Это связано с на­личием одного и более донорных алкильных за­местителей, положительный индуктивный эффект которых повышает электронную плотность на атоме азота. Повышение электронной плотности превра­щает азот в более сильного донора пары электронов, что повышает его основные свойства:

Горение амионов . Амины горят на воздухе с об­разованием углекислого газа, воды и азота:

Применение аминов

Амины широко применяются для получения лекарств, полимерных материалов. Анилин - важнейшее соединение данного класса, которое используют для производства анилиновых краси­телей, лекарств (сульфаниламидных препаратов), полимерных материалов (анилинформальдегидных смол).



Амины

Классификация и номенклатура

Аминами являются органические производные аммиака, в молекуле которого один, два или три атома водорода заменены радикалами. По этому признаку различают первичные (RNH 2), вторичные (R 2 NH) и третичные (R 3 N) амины.

В зависимости от характера радикала амины могут быть предельными или ароматиче­скими, а также предельно-ароматическими (метиламин, анилин и метиланилин, соответ­ственно). С атомом азота может быть связан и разветвленный радикал (например, трет бутиламин), и поликонденсированный, что демонстрируется примером адамантиламина (аминоадамантана), обладающего биологическим действием и применяемого в медицине

По принципам рациональной номенклатуры название этого класса веществ складывает­ся из названия радикалов при атоме азота, именуемого амином. В названии первичных ами­нов по международной номенклатуре аминному атому азота присваивается название ами- но, употребляемое с указанием его местоположения перед названием углеводородной цепи. Впрочем, многие амины сохранили.свои тривиальные названия, например, анилин".

Кроме аминогруппы в молекулах органических веществ могут находиться и иные заме­стители, как это, к примеру, имеет место в случае сульфаниловой кислоты. Аминный атом азота может быть включен и в насыщенный цикл. К числу насыщенных гетероцикличес­ких аминов относится построенный с напряжением трехчленный этиленимин, обладающий сильным мутагенным действием. Этилениминовый цикл входит в состав молекул некото­рых лекарств. Без напряжения построены тетрагидропиррольный и пиперидиновый циклы, присутствующие в молекулах ряда алкалоидов (в том числе никотина и анабазина, см. разд. 20.4). С их участием, как и с помощью морфолинового кольца, построены молекулы многих лекарственных средств.

Гетероциклическими ароматическими аминами являются, к примеру, пиррол и пиридин. Наконец, аминогруппа может быть связана и с гетероциклом, что иллюстрируется приме­ром аденина (6-аминопурина) - незаменимого фрагмента нуклеиновых кислот.

К числу производных аммиака относятся и органические вещества, которые можно по­строить из солей аммония или его гидроксида замещением всех четырех атомов водорода различными углеводородными радикалами, как это видно на примере тетраметиламмоний гидроксида:

Другим примером тетразамещенных аммонийных производных - четвертичных аммо­ниевых оснований или их солей - служит нейрин, токсичное вещество, образующееся в про­цессе гниения тканей животного происхождения.

Четвертичный атом азота может входить в состав гетероциклов, например, соответству­ющей соли из ряда пиридина - N-алкилпиридиниевой соли. К таким четвертичным солям относятся некоторые алкалоиды. Кроме того, четвертичный атом азота входит в состав мно­гих лекарственных веществ и некоторых биомолекул.

Выше приведенные примеры демонстрируют многообразие аминосоединений и их боль­шое медико-биологическое значение. К этому необходимо добавить, что аминогруппа вхо­дит в состав таких классов биомолекул, как аминокислоты и белки, нуклеиновые кислоты, присутствует в ряде природных производных углеводов, именуемых аминосахарами. Ами­ногруппа является важнейшей функциональной группой алкалоидов и многочисленных ле­карственных препаратов самого различного назначения. Отдельные примеры таких веществ будут приведены ниже.

24.3.2. Амины как органические основания

Наличие свободной электронной пары азота сообщает аминам свойства оснований. Поэто­му характерной особенностью аминов является реакция с кислотами с образованием соответ­ствующих аммониевых солей, что видно из реакции для первичного предельного амина:

Аналогично из анилина образуется анилиниевая соль, из пиридина - пиридиниевая и т.д. Подобно аммиаку, амины в водных растворах создают щелочную среду, согласно урав­нению:

Количественно основность азотсодержащих оснований в водной среде отражается вели­чиной константы равновесия ь ) (чаще используют величинурК ь ) илир/С а (ВН +), характе­ризующей кислотность сопряженной кислоты данного основания.

Наиболее сильными основаниями будут соединения, содержащие атом азота, у которо­го неподеленная пара азота находится на неподеленной 5р 3 -гибридной орбитали (алифати­ческие амины, аммиак, аминокислоты), а наиболее слабыми - те, у которых эта пара уча­ствует в р,п-сопряжении (амиды, пиррол, пиридин).

Электронодонорные заместители, к которым относятся алкильные группы, должны уве­личивать основность аминов, поскольку увеличивают электронную плотность у атома азота. Так, метиламин (рК ь = 3,27) является более сильным основанием, чем аммиак (рК ь = 4,75), а диметиламин (рК ь = 3,02) - более сильное основание, чем метиламин. Однако при переходе к триметиламину, вопреки ожиданию, основность несколько падает (рК ь = 4,10). Причина это­го состоит в том, что с увеличением числа заместителей у атома азота подход протона все бо­лее затрудняется. Таким образом, здесь речь идет не об электронном, а пространственном вли­янии заместителей. Это воздействие заместителей называют стерическим фактором.

Ароматические амины - более слабые основания, чем предельные, из-за электроноак-цепторного эффекта ароматического кольца. Поэтому невысока основность и пиридина. Накопление фенильных заместителей заметно подавляет активность электронной пары атома азота. Так, рК, дифениламина составляет 13,12, а трифениламин совсем не прояв­ляет свойств основания.

Чрезвычайно низкая основность пиррола вызвана тем, что в его молекуле электронная пара атома азота вовлечена в образование бл-электронной ароматической связи. На ее свя­зывание с протоном требуется значительная дополнительная затрата энергии. В результа­те образования пирролиевых солей ароматическая связь, а, следовательно, и стабильность молекулы исчезают. Этим объясняется то, что пиррол в кислой среде быстро осмоляется.

Интересно отметить, что сильный электроноакцепторный эффект, оказываемый пир-рольным циклом на атом азота, приводит к ослаблению связи N-H, в силу чего пиррол спо­собен проявлять свойства слабой кислоты (рК а = 17,5).

Под действием такого активного металла, как калий, может быть приготовлена его кали­евая соль - пиррол-калий.

Кислотные свойства связи N-H пиррольного цикла объясняют, в частности, способность порфина и его природных производных к образованию солей с катионами металлов. Два пиррольных кольца молекулы порфирина координируются с катионом за счет электронных пар своих атомов азота, а два других - заменяя атомы водорода, как и молекула самого пир­рола при образовании пиррол-калия. Именно такими солями и являются хлорофилл и ге­моглобин

Химические свойства аминов.

Так как амины, являясь производными аммиака, имеют сходное с ним строение (т.е. имеют неподеленную пару электронов в атоме азота), то они и проявляют подобные ему свойства. Т.е. амины, как и аммиак, являются основаниями, так как атом азота может предоставлять электронную пару для образования связи с электроннедостаточными частицами по донорно-акцепторному механизму (соответствие определению основности по Льюису).

I. Свойства аминов как оснований (акцепторов протонов)

1. Водные растворы алифатических аминов проявляют щелочную реакцию, т.к. при их взаимодействии с водой образуются гидроксиды алкиламмония, аналогичные гидроксиду аммония:

CH 3 NH 2 + H 2 O CH 3 NH 3 + + OH −

Анилин с водой практически не реагирует.

Водные растворы имеют щелочной характер:

Связь протона с амином, как и с аммиаком, образуется по донорно-акцепторному механизму за счет неподеленной электронной пары атома азота.

Алифатические амины – более сильные основания, чем аммиак, т.к. алкильные радикалы увеличивают электронную плотность на атоме азота за счет +I -эффекта. По этой причине электронная пара атома азота удерживается менее прочно и легче взаимодействует с протоном.

2. Взаимодействуя с кислотами, амины образуют соли:

C 6 H 5 NH 2 + HCl → (C 6 H 5 NH 3)Cl

хлорид фениламмония

2CH 3 NH 2 + H 2 SO 4 → (CH 3 NH 3) 2 SO 4

сульфат метиламмония

Соли аминов – твердые вещества, хорошо растворимые в воде и плохо растворимы в неполярных жидкостях. При реакции с щелочами выделяются свободные амины:

Ароматические амины являются более слабыми основаниями, чем аммиак, поскольку неподеленная электронная пара атома азота смещается в сторону бензольного кольца, вступая в сопряжение с π-электронами ароматического ядра, что уменьшает электронную плотность на атоме азота (-М-эффект). Напротив, алкильная группа является хорошим донором электронной плотности (+I-эффект)..

или

Уменьшение электронной плотности на атоме азота приводит к снижению способности отщеплять протоны от слабых кислот. Поэтому анилин взаимодействует лишь с сильными кислотами (HCl, H 2 SO 4), а его водный раствор не окрашивает лакмус в синий цвет.

У атома азота в молекулах аминов есть неподеленная пара электронов, которая может участвовать в образовании связи по донорно-акцепторному механизму.

анилин аммиак первичный амин вторичный амин третичный амин

электронная плотность на атоме азота возрастает.

Из-за наличия в молекулах неподеленной пары электронов амины, как и аммиак, проявляют основные свойства.

анилин аммиак первичный амин вторичный амин

основные свойства усиливаются, из-за влияния типа и числа радикалов.

C 6 H 5 NH 2 < NH 3 < RNH 2 < R 2 NH < R 3 N (в газовой фазе)

II. Окисление аминов

Амины, особенно ароматические, легко окисляются на воздухе. В отличие от аммиака, они способны воспламеняться от открытого пламени. Ароматические амины самопроизвольно окисляются на воздухе. Так, анилин быстро буреет на воздухе вследствие окисления.

4СH 3 NH 2 + 9O 2 → 4CO 2 + 10H 2 O + 2N 2

4C 6 H 5 NH 2 + 31O 2 → 24CO 2 + 14H 2 O + 2N 2

III. Взаимодействие с азотистой кислотой

Азотистая кислота HNO 2 – неустойчивое соединение. Поэтому она используется только в момент выделения. Образуется HNO 2 , как все слабые кислоты, действием на ее соль (нитрит) сильной кислотой:

KNO 2 + HCl → НNO 2 + KCl

или NO 2 − + H + → НNO 2

Строение продуктов реакции с азотистой кислотой зависит от характера амина. Поэтому данная реакция используется для различения первичных, вторичных и третичных аминов.

· Первичные алифатические амины c HNO 2 образуют спирты:

R-NH 2 + HNO 2 → R-OH + N 2 + H 2 O

  • Огромное значение имеет реакция диазотирования первичных ароматических аминов под действием азотистой кислоты, получаемой по реакции нитрита натрия с соляной кислотой. А в последствии образуется фенол:

· Вторичные амины (алифатические и ароматические) под действием HNO 2 превращаются в N-нитрозопроизводные (вещества с характерным запахом):

R 2 NH + H-O-N=O → R 2 N-N=O + H 2 O

алкилнитрозамин

· Реакция с третичными аминами приводит к образованию неустойчивых солей и не имеет практического значения.

IV. Особые свойства:

1. Образование комплексных соединений с переходными металлами:

2. Присоединение алкилгалогенидов Амины присоединяют галогеналканы с образованием соли:

Обрабатывая получившуюся соль щелочью, можно получить свободный амин:

V. Ароматическое электрофильное замещение в ароматических аминах (реакция анилина с бромной водой или с азотной кислотой):

В ароматических аминах аминогруппа облегчает замещение в орто- и пара-положениях бензольного кольца. Поэтому галогенирование анилина происходит быстро и в отсутствие катализаторов, причем замещаются сразу три атома водорода бензольного кольца, и выпадает белый осадок 2,4,6-триброманилина:

Эта реакция бромной водой используется как качественная реакция на анилин.

В этих реакциях (бромирование и нитрование) преимущественно образуются орто - и пара -производные.

4. Способы получения аминов.

1. Реакция Гофмана . Один из первых методов получения первичных аминов − алкилирование аммиака алкилгалогенидами:

Это не самый лучший метод, так как в результате получается смесь аминов всех степеней замещения:

и т.д. Алкилирующими агентами могут выступать не только алкилгалогениды, но и спирты. Для этого смесь аммиака и спирта пропускают над оксидом алюминия при высокой температуре.

2. Реакция Зинина - удобный способ получения ароматических аминов при восстановлении ароматических нитросоединений. В качестве восстановителей используются: H 2 (на катализаторе). Иногда водород генерируют непосредственно в момент реакции, для чего обрабатывают металлы (цинк, железо) разбавленной кислотой.

2HCl + Fe (стружка) → FeCl 2 + 2H

C 6 H 5 NO 2 + 6[H] C 6 H 5 NH 2 + 2H 2 O.

В промышленности эта реакция протекает при нагревании нитробензола с водяным паром в присутствии железа. В лаборатории водород "в момент выделения" образуется по реакции цинка со щелочью или железа с соляной кислотой. В последнем случае образуется хлорид анилиния.

3. Восстановление нитрилов. Используют LiAlH 4:

4. Ферментатичное декарбоксилирование аминокислот:

5. Применение аминов.

Амины применяются в фармацевтической промышленности и органическом синтезе (CH 3 NH 2 , (CH 3) 2 NH, (C 2 H 5) 2 NH и др.); при производстве найлона (NH 2 -(CH 2) 6 -NH 2 − гексаметилендиамин); в качестве сырья для производства красителей и пластмасс (анилин), а также пестицидов.

Список используемых источников:

  1. О.С. Габриелян и др. Химия. 10 класс. Профильный уровень: учебник для общеобразовательных учрждений; Дрофа, Москва, 2005г.;
  2. «Репетитор по химии» под редакцией А. С. Егорова; «Феникс», Ростов-на-Дону, 2006г;
  3. Г. Е. Рудзитис, Ф. Г. Фельдман. Химия 10 кл. М., Просвещение, 2001;
  4. https://www.calc.ru/Aminy-Svoystva-Aminov.html
  5. http://www.yaklass.ru/materiali?mode=lsntheme&themeid=144
  6. http://www.chemel.ru/2008-05-24-19-21-00/2008-06-01-16-50-05/193-2008-06-30-20-47-29.html
  7. http://cnit.ssau.ru/organics/chem5/n232.htm

Органические основания - такое название часто используют в химии для соединений, являющихся производными аммиака. Атомы водорода в его молекуле замещены на углеводородные радикалы. Речь идет об аминах - соединениях, повторяющих химические свойства аммиака. В нашей статье мы познакомимся с общей формулой аминов и их свойствами.

Строение молекулы

В зависимости от того, сколько атомов водорода замещены углеводородными радикалами, различают первичные, вторичные и третичные амины. Например, метиламин - первичный амин, в котором водородную частицу заменили группой -CH 3 . Структурная формула аминов - R-NH 2 , ее можно использовать, чтобы определить состав органического вещества. Примером вторичного амина может быть диметиламин, имеющий следующий вид: NH 2 -NH-NH 2 . В молекулах третичных соединений все три атома водорода аммиака замещены углеводородными радикалами, например, триметиламин имеет формулу (NH 2) 3 N. Строение аминов влияет на их физические и химические свойства.

Физическая характеристика

Агрегатное состояние аминов зависит от того, какова молярная масса радикалов. Чем она меньше, тем ниже удельный вес вещества. Низшие вещества класса аминов представлены газами (например, метиламин). Они имеют хорошо выраженный запах аммиака. Средние амины - это слабо пахнущие жидкости, а соединения с большой массой углеводородного радикала - твердые вещества без запаха. Растворимость аминов также зависит от массы радикала: чем она больше, тем вещество хуже растворяется в воде. Таким образом, строение аминов определяет их физическое состояние и характеристику.

Химические свойства

Характеристика веществ зависит в основном от превращений аминогруппы, в которой ведущая роль отводится ее неподеленной электронной паре. Так как органические вещества класса аминов являются производными аммиака, то они способны к реакциям, характерным для NH 3 . Например, соединения растворяются в воде. Продуктами такой реакции будут вещества, проявляющие свойства гидроксидов. Например, метиламин, атомный состав которого подчиняется общей формуле предельных аминов R-NH 2 , с водой образует соединение - гидроксид метиламмония:

CH 3 - NH 2 + H 2 O = OH

Органические основания взаимодействуют с неорганическими кислотами, при этом в продуктах обнаруживается соль. Так, метиламин с соляной кислотой дает хлорид метиламмония:

СН 3 -NH 2 + HCl -> Cl

Реакции аминов, общая формула которых - R-NH 2 , с органическими кислотами проходят с замещением атома водорода аминогруппы сложным анионом кислотного остатка. Они называются реакциями алкилирования. Как и в реакции с нитритной кислотой, ацильные производные могут образовывать только первичные и вторичные амины. Триметиламин и другие третичные амины к таким взаимодействиям не способны. Добавим также, что алкилирование в аналитической химии применяют для разделения смесей аминов, оно также служит качественной реакцией на первичные и вторичные амины. Среди циклических аминов важное место принадлежит анилину. Его добывают из нитробензола восстановлением последнего водородом в присутствии катализатора. Анилин является исходным сырьем для производства пластмасс, красителей, взрывчатых и лекарственных веществ.

Особенности третичных аминов

Третичные производные аммиака отличаются своими химическими свойствами от одно- или двухзамещенных соединений. Например, они могут взаимодействовать с галогенопроизводными соединениями предельных углеводородов. В результате образуются соли тетраалкиламмония. Окись серебра вступает в реакцию с третичными аминами, при этом амины переходят в гидроксиды тетраалкиламмония, являющиеся сильными основаниями. Апротонные кислоты, например трифторид бора, с триметиламином способны образовывать комплексные соединения.

Качественная проба на первичные амины

Реактивом, с помощью которого можно обнаружить одно- или двухзамещенные амины, может служить азотистая кислота. Так как она не существует в свободном состоянии, для ее получения в растворе сначала проводят реакцию между разбавленной хлоридной кислотой и нитритом натрия. Затем добавляют растворенный первичный амин. Состав его молекулы можно выразить с помощью общей формулы аминов: R-NH 2. Этот процесс сопровождается появлением молекул непредельных углеводородов, которые можно определить с помощью реакции с бромной водой или раствором перманганата калия. Качественной можно считать и изонитрильную реакцию. В ней первичные амины взаимодействуют с хлороформом в среде с избыточной концентрацией анионов гидроксогрупп. В результате происходит образование изонитрилов, обладающих неприятным специфическим запахом.

Особенности реакции вторичных аминов с нитритной кислотой

Технология получения реактива HNO 2 описана нами выше. Затем к раствору, содержащему реактив, прибавляют органическое производное аммиака, содержащее два углеводородных радикала, например, диэтиламин, молекула которого соответствует общей формуле вторичных аминов NH 2 -R-NH 2 . В продуктах реакции находим нитросоединение: N-нитрозодиэтиламин. Если на него подействовать хлоридной кислотой, то соединение разлагается на хлоридную соль исходного амина и хлористый нитрозил. Добавим еще, что третичные амины не способны к реакциям с азотистой кислотой. Это объясняется следующим фактом: нитритная кислота относится к слабым кислотам, и ее соли при взаимодействии с аминами, содержащими три углеводородных радикала, в водных растворах полностью гидролизуются.

Способы получения

Амины, общая формула которых - R-NH 2 , можно добыть восстановлением соединений, содержащих азот. Например, это может быть восстановление нитроалканов в присутствии катализатора - металлического никеля - при нагревании до +50 ⁰C и при давлении до 100 атм. Нитроэтан, нитропропан или нитрометан в результате этого процесса превращаются в амины. Вещества данного класса можно получить и восстановлением водородом соединений группы нитрилов. Данная реакция проходит в органических растворителях, при этом необходимо присутствие никелевого катализатора. Если в качестве восстановителя используют металлический натрий, в этом случае процесс осуществляется в спиртовом растворе. Приведем в качестве примеров еще два метода: аминирование галогеноалканов и спиртов.

В первом случае образуется смесь аминов. Аминирование спиртов осуществляется следующим способом: смесь паров метанола или этанола с аммиаком пропускают над окисью кальция, выполняющей роль катализатора. Образующиеся первичные, вторичные и третичные амины обычно можно разделить разгонкой.

В нашей статье мы изучили строение и свойства азотсодержащих органических соединений - аминов.