Химическая связь. Какая валентность серы? Возможные валентности серы


Число общих электронных пар между связанными атомами характеризует кратность связи.  

По числу общих электронных пар химические связи подразделяются на простые (одинарные) и кратные - двойные и тройные.  

По числу общих электронных пар химические связи подразделяются на простые (ординарные) и кратные - двойные и тройные. Если между двумя атомами одинаковой или различной химической природы возникает только одна ковалентная связь, то ее называют простой, или ординарной, связью. Сигма-связь образуется в результате взаимодействия двух s - электро-нов, двух / з-элект ронов, а также двух смешанных s - и р-электронов. На рис. 14 изображены о-связи в некоторых элементарных и сложных веществах.  

Валентность элемента в соединениях с ковалентной связью определяется числом общих электронных пар, которые атом элемента образует с атомами других элементов.  

Валентность элемента в соединениях с ковалентной связью определяется числом общих электронных пар.  

В соединениях с ковалентной связью валентность элемента определяется числом общих электронных пар. Атом, к которому смещена электронная пара, обладает отрицательной валентностью, а противоположный атом - положительной валентностью.  

Степень окисления элемента в молекуле с ковалентной связью равна числу общих электронных пар. Так, в молекуле аммиака атом азота образует с атомами воДорода три общие электронные пары, следовательно, валентность азота равна трем.  

Для многоатомных частиц типа SO2, СО2, SO, SO и С8Ыв, в которых п-связи предпочтительнее рассматривать как многоцентровые и делокализо-ванные, подсчет числа общих электронных пар для отдельных атомов теряет свой смысл, а число валентностей ничего не говорит о ковалентиости атомов.  

Одиночные (или неспаренные) электроны в электронных оболочках атомов, за счет спаривания которых возникает химическая связь в молекулах, называют валентными. Число общих электронных пар, образующихся при взаимодействии атомов химических элементов, определяет их валентность.  

По методу валентных связей, в котором все ковалентные связи рассматриваются как двухцентровые, ковалентность атома - это число общих электронных пар, образуемых данным атомом.  

В органических соединениях СН4, С2Н4, С2Н2 атом углерода четырехвалентен. Для многоцентровых частиц, например S02, C02, S047 SO, C6H6 в которых л-связи предпочтительное рассматривать как многоцентровые и делокализованные, подсчет числа общих электронных пар для отдельных атомов теряет свой смысл, и число валентностей ничего не говорят о ковалентности атомов.  

Из приведенных схем видно, что каждая электронная пара соответствует одной единице валентности. Химическая связь, осуществляемая парой общих электронов, называется ковалент-ной, или атомной, связью. Валентность элемента в соединениях с ковалентной (атомной) связью определяется числом общих электронных пар.  

Валентность элемента в настоящее время рассматривается как число ковалентных связей его атома в данном соединении, современные синонимы этого термина - ковалентность, связность. Именно в ковалентной химической связи проявляется высокая химическая специфичность каждого элемента и каждого его валентного состояния: специфичность энергии связи, степени полярности и стереометрических характеристик - углов связи, их длин. Ионная связь менее специфична; она собственно становится связью только в конденсированных фазах, главным образом в твердых телах, в которых кристаллические структуры ионных веществ довольно однообразны и определяются зарядами и размерами ионов. Поэтому нельзя априорно определять валентность по числу неспаренных электронов в основном состоянии атома, как это иногда делается; валентность определяется числом общих электронных пар между данным атомом и соединенными с ним атомами. При этом в равной мере учитывается каждая а -, я - и 6-связь.  

Страницы:      1

Сера (лат. Sulfur) — элемент-неметалл. Химический символ S, порядковый номер в таблице Менделеева — 16. Валентность серы была установлена еще до изучения строения атома. Определили ее значение на основании свойства замещать, притягивать либо присоединять некоторое количество других атомов или групп. Позже исследователи выяснили роль отрицательно заряженных частиц (электронов) в возникновении

Валентность серы: какие особенности атомов влияют на ее значение?

По распространенности на Земле химический элемент находится на 16-м месте. Встречается в виде ярко-желтых кристаллов или порошка в горных породах, вблизи действующих и потухших вулканов. Наиболее известные природные соединения — сульфиды и сульфаты.

Особенности элемента и вещества:

  1. Сильный неметалл.
  2. По электроотрицательности (ЭО) или способности притягивать к себе электроны сера уступает только фтору, кислороду, азоту, хлору и брому.
  3. Взаимодействует с металлами и неметаллами, простыми и сложными веществами.

Отличия в свойствах зависят от строения и состояния атома, разницы в значениях ЭО. Выясним, какая валентность может быть у серы в соединениях. Их химическое поведение зависит от строения энергетических оболочек, числа и расположения внешних электронов в атоме.

Почему валентность бывает разной?

Стабильными являются естественные изотопы серы с массовыми числами 32 (наиболее распространенный), 33, 34 и 36. Атом каждого из этих нуклидов содержит 16 положительно заряженных протонов. В пространстве вблизи ядра передвигаются с огромной скоростью 16 электронов. Они бесконечно малы, отрицательно заряжены. Меньше притягиваются к ядру (более свободны) 6 внешних частиц. Несколько из них или все принимают участие в образовании разных типов химической связи. По современным представлениям валентность серы определяется числом созданных общих (связывающих) электронных пар. Обычно на рисунках и схемах внешние частицы, принимающие участие в этом процессе, изображают точками вокруг химического знака.

Как валентность зависит от строения атома?

С помощью энергетической диаграммы можно показать строение уровней и подуровней (s, p, d), от которых зависит формула валентности серы. Две разнонаправленные стрелочки символизируют спаренные, одна — неспаренные электроны. Внешнее пространство атома серы образуют орбитали 6 частиц, а необходимо 8 для устойчивости по правилу октета. Конфигурацию валентной оболочки отражает формула 3s23p4. Электроны незавершенного слоя обладают большим запасом энергии, что вызывает неустойчивое состояние всего атома. Для достижения стабильности атому серы требуются две дополнительные отрицательные частицы. Они могут быть получены при образовании с другими элементами или за счет поглощения двух свободных электронов. В этом случае сера проявляет валентность II (-). Такое же значение можно получить, используя формулу: 8 - 6 = 2, где 6 — это номер группы, в которой находится элемент.

Где встречаются соединения, в которых валентность серы равна II (-)?

Элемент притягивает или полностью отнимает электроны у атомов с меньшим значением электроотрицательности по шкале Поллинга. Валентность II (-) проявляется в сульфидах металлов и неметаллов. Обширная группа подобных соединений встречается в составе имеющих огромное практическое значение. К ним относятся пирит (FeS), сфалерит (ZnS), галенит (PbS) и другие вещества. Кристаллы сульфида железа имеют красивый желтовато-коричневый цвет и блеск. Часто минерал пирит называют «золотом дураков». Для получения металлов из руд проводят их обжиг или восстановление. Сульфид водорода H2S имеет такую же электронную структуру, как вода. Происхождение H2S:

  • выделяется при гниении белков (например, куриного яйца);
  • извергается с вулканическими газами;
  • накапливается в природных водах, нефти;
  • выделяется в пустоты в земной коре.

Почему формула оксида четырехвалентной серы SO2?

Формула диоксида показывает, что один атом серы в молекуле связан с двумя атомами кислорода, каждому из которых необходимо 2 электрона до октета. Возникшая связь является по своей природе ковалентной полярной (ЭО кислорода больше). Валентность серы в этом соединении имеет значение IV (+), потому что 4 электрона атома серы смещаются в сторону двух атомов кислорода. Формулу можно записать так: S2O4, но по правилам нужно сократить на 2. Диоксид при растворении в воде образует ионы слабой сернистой кислоты. Ее соли — сульфиты — сильные восстановители. Газ SO2 служит промежуточным продуктом в

В каких веществах сера проявляет свою высшую валентность?

Оксид SO3 или S2O6 — бесцветная жидкость, при температурах ниже 17°С она твердеет. В соединении SO3 валентность кислорода равна II (-), а серы VI (+). растворяется в воде и образует сильную двухосновную серную кислоту. За большую роль в производственных процессах вещество назвали «хлебом химической промышленности». Важная роль в хозяйстве и медицине принадлежит солям кислоты — сульфатам. Используются кристаллогидрат кальция (гипс), магния (английская или горькая соль).

В образовании разных типов химической связи могут участвовать 1, 2, 3, 4, 6 внешних электронов. Назовем возможные валентности серы, учитывая, что есть редкие и нестабильные соединения: I (-), II (-), II (+), III (+), IV (+), VI (+). Вторую положительную валентность элемент приобретает в монооксиде SO. Наиболее распространенные значения II (-), IV (+), VI (+) проявляет сера в составе группы веществ, имеющих промышленное, сельскохозяйственное и медицинское значение. Ее соединения используются в производстве фейерверков.

Большой проблемой остается улавливание отходящих газов, среди которых вредные для человека и окружающей среды IV (+), VI (+) и сероводород. Созданы технологии для переработки этих газообразных отходов и получения из них серной кислоты, сульфатов. С этой целью химические предприятия возводят рядом с металлургическими комбинатами или в одном районе. В результате объем загрязнений сокращается, меньше возникает «сернокислотных дождей».

Химическая связь.

    определение химической связи;

    типы химических связей;

    метод валентных связей;

    основные характеристики ковалентной связи;

    механизмы образования ковалентной связи;

    комплексные соединения;

    метод молекулярных орбиталей;

    межмолекулярные взаимодействия.

ОПРЕДЕЛЕНИЕ ХИМИЧЕСКОЙ СВЯЗИ

Химической связью называют взаимодействие между атомами, приводящее к образованию молекул или ионов и прочному удерживанию атомов друг около друга.

Химическая связь имеет электронную природу, т. е. осуществляется за счёт взаимодействия валентных электронов. В зависимости от распределения валентных электронов в молекуле, различают следующие виды связей: ионная, ковалентная, металлическая и др. Ионную связь можно рассматривать как предельный случай ковалентной связи между атомами, резко отличающимися по природе.

ТИПЫ ХИМИЧЕСКОЙ СВЯЗИ

Ионная связь.

Основные положения современной теории ионной связи.

    Ионная связь образуется при взаимодействии элементов, резко отличающихся друг от друга по свойствам, т. е. между металлами и неметаллами.

    Образование химической связи объясняется стремлением атомов к достижению устойчивой восьмиэлектронной внешней оболочки (s 2 p 6).

Ca: 1s 2 2s 2 p 6 3s 2 p 6 4s 2

Ca 2+ : 1s 2 2s 2 p 6 3s 2 p 6

Cl: 1s 2 2s 2 p 6 3s 2 p 5

Cl – : 1s 2 2s 2 p 6 3s 2 p 6

    Образовавшиеся разноименно заряженные ионы удерживаются друг около друга за счёт электростатического притяжения.

    Ионная связь не направленная.

    Чисто ионной связи не существует. Так как энергия ионизации больше энергии сродства к электрону, то полного перехода электронов не происходит даже в случае пары атомов с большой разницей электроотрицательностей. Поэтому можно говорить о доле ионности связи. Наибольшая ионность связи имеет место во фторидах и хлоридах s-элементов. Так, в кристаллахRbCl,KCl,NaClиNaFона равна 99, 98, 90 и 97% соответственно.

Ковалентная связь.

Основные положения современной теории ковалентной связи.

    Ковалентная связь образуется между элементами, сходными по свойствам, то есть, неметаллами.

    Каждый элемент предоставляет для образования связей 1 электрон, причём спины электронов должны быть антипараллельными.

    Если ковалентная связь образована атомами одного и того же элемента, то эта связь не полярная, т. е. общая электронная пара не смещена ни к одному из атомов. Если же ковалентная связь образована двумя разными атомам, то общая электронная пара смещена к наиболее электроотрицательному атому, это полярная ковалентная связь .

    При образовании ковалентной связи происходит перекрывание электронных облаков взаимодействующих атомов, в результате, в пространстве между атомами возникает зона повышенной электронной плотности, притягивающая к себе положительно заряженные ядра взаимодействующих атомов, и удерживающая их друг около друга. Вследствие этого снижается энергия системы (рис. 14). Однако при очень сильном сближении атомов возрастает отталкивание ядер. Поэтому имеется оптимальное расстояние между ядрами (длина связи ,l св), при котором система имеет минимальную энергию. При таком состоянии выделяется энергия, называемая энергией связи – Е св.

Рис. 14. Зависимость энергии систем из двух атомов водорода с параллельными (1) и антипараллельными (2) спинами от расстояния между ядрами (Е – энергия системы, Е св – энергия связи,r– расстояние между ядрами,l – длина связи).

Для описания ковалентной связи используют 2 метода: метод валентных связей (ВС) и метод молекулярных орбиталей (ММО).

МЕТОД ВАЛЕНТНЫХ СВЯЗЕЙ.

В основе метода ВС лежат следующие положения:

1. Ковалентная химическая связь образуется двумя электронами с противоположно направленными спинами, причем эта электронная пара принадлежит двум атомам. Комбинации таких двухэлектронных двухцентровых связей, отражающие электронную структуру молекулы, получили название валентных схем.

2. Ковалентная связь тем прочнее, чем в большей степени перекрываются взаимодействующие электронные облака.

Для наглядного изображения валентных схем обычно пользуются следующим способом: электроны, находящиеся во внешнем электронном слое обозначают точками, располагаемыми вокруг химического символа атома. Общие для двух атомов электроны показывают точками, помещаемыми между их химическими символами; двойная или тройная связь обозначается соответственно двумя или тремя парами общих точек:

N: 1s 2 2s 2 p 3 ;

C: 1s 2 2s 2 p 4

Из приведенных схем видно, что каждая пара электронов, связывающая два атома, соответствует одной черточке, изображающей ковалентную связь в структурных формулах:

Число общих электронных пар, связывающих атом данного элемента с другими атомами, или, иначе говоря, число образуемых атомом ковалентных связей, называется ковалентностью по методу ВС. Так, ковалентность водорода равна 1, азота – 3.

По способу перекрывания электронных облаков, связи бывают двух видов:  - связь и  - связь.

 - связь возникает при перекрывании двух электронных облаков по оси, соединяющей ядра атомов.

Рис. 15. Схема образования  - связей.

 - связь образуется при перекрывании электронных облаков по обе стороны от линии, соединяющей ядра взаимодействующих атомов.

Рис. 16. Схема образования  - связей.

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ КОВАЛЕНТНОЙ СВЯЗИ.

1. Длина связи, ℓ. Это минимальное расстояние между ядрами взаимодействующих атомов, которое соответствует наиболее устойчивому состоянию системы.

2. Энергия связи, E min – это то количество энергии, которое необходимо затратить для разрыва химической связи и для удаления атомов за пределы взаимодействия.

3. Дипольный момент связи,,=qℓ. Дипольный момент служит количественной мерой полярности молекулы. Для неполярных молекул дипольный момент равен 0, для неполярных не равен 0. Дипольный момент многоатомной молекулы равен векторной сумме диполей отдельных связей:

4. Ковалентная связь характеризуется направленностью. Направленность ковалентной связи определяется необходимостью максимального перекрывания в пространстве электронных облаков взаимодействующих атомов, которые приводят к образованию наиболее прочных связей.

Так как эти -связи строго ориентированы в пространстве, в зависимости от состава молекулы они могут находиться под определенным углом друг к другу – такой угол называется валентным.

Двухатомные молекулы имеют линейное строение. Многоатомные молекулы имеют более сложную конфигурацию. Рассмотрим геометрию различных молекул на примере образования гидридов.

1. VIгруппа, главная подгруппа (кроме кислорода), Н 2 S, Н 2 Sе, Н 2 Те.

S1s 2 2s 2 р 6 3s 2 р 4

У водорода в образовании связи участвует электрон с s-АО, у серы – 3р у и 3р z . Молекула Н 2 Sимеет плоское строение с углом между связями 90 0 . .

Рис 17. Строение молекулы Н 2 Э

2. Гидриды элементов Vгруппы, главной подгруппы: РН 3 , АsН 3 ,SbН 3 .

Р 1s 2 2s 2 р 6 3s 2 р 3 .

В образовании связи принимают участие: у водорода s-АО, у фосфора - р у, р х и р z АО.

Молекула РН 3 имеет форму тригональной пирамиды (в основании – треугольник).

Рис 18. Строение молекулы ЭН 3

5. Насыщаемость ковалентной связи - это число ковалентных связей, которые может образовывать атом. Оно ограничено, т.к. элемент обладает ограниченным количеством валентных электронов. Максимальное число ковалентных связей, которые может образовывать данный атом в основном или возбуждённом состоянии, называется его ковалентностью.

Пример: водород – одноковалентен, кислород – двухковалентен, азот – трёхковалентен и т. д.

Некоторые атомы могут повышать свою ковалентность в возбуждённом состоянии за счёт разъединения спаренных электронов.

Пример. Be 0 1s 2 2s 2

У атома бериллия в возбужденном состоянии один валентный электрон находится на 2p-АО и один электрон на 2s-АО, то есть ковалентностьBe 0 = 0 а ковалентностьBe* = 2. В ходе взаимодействия происходит гибридизация орбиталей.

Гибридизация - это выравнивание энергии различных АО в результате смешения перед химическим взаимодействием. Гибридизация - условный прием, позволяющий предсказать структуру молекулы при помощи комбинации АО. В гибридизации могут принимать участие те АО, энергии которых близки.

Каждому виду гибридизации соответствует определенная геометрическая форма молекул.

В случае гидридов элементов IIгруппы главной подгруппы в образовании связи участвуют две одинаковыеsр-гибридные орбитали. Подобный тип связи называетсяsр-гибридизация.

Рис 19. Молекула ВеН 2 .sp-Гибридизация.

sp-Гибридные орбитали имеют несимметричную форму, в сторону водорода направлены удлиненные части АО с валентным углом, равным 180 о. Поэтому молекула ВеН 2 имеет линейное строение (рис.).

Строение молекул гидридов элементов IIIгруппы главной подгруппы рассмотрим на примере образования молекулыBH 3 .

B 0 1s 2 2s 2 p 1

Ковалентность B 0 = 1, ковалентностьB* = 3.

В образовании связей принимают участие три sр-гибридные орбитали, которые образуются в результате перераспределения электронных плотностейs-АО и двух р-АО. Такой тип связи называетсяsр 2 - гибридизацией. Валентный угол приsр 2 - гибридизации равен 120 0 , поэтому молекула ВН 3 имеет плоское треугольное строение.

Рис.20. Молекула BH 3 . sp 2 -Гибридизация.

На примере образования молекулы СH 4 рассмотрим строение молекул гидридов элементовIVгруппы главной подгруппы.

C 0 1s 2 2s 2 p 2

Ковалентность C 0 = 2, ковалентностьC* = 4.

У углерода в образовании химической связи участвуют четыре sр-гибридные орбитали, образованные в результате перераспределения электронных плотностей междуs-АО и тремя р-АО. Форма молекулы СН 4 - тетраэдр, валентный угол равен 109 о 28`.

Рис. 21. Молекула СН 4 .sp 3 -Гибридизация.

Исключениями из общего правила являются молекулы Н 2 О иNН 3 .

В молекуле воды углы между связями равны 104,5 о. В отличии от гидридов других элементов этой группы, вода имеет особые свойства, она полярна, диамагнитна. Все это объясняется тем, что в молекуле воды тип связиsр 3 . То есть в образовании химической связи участвуют четыреsр - гибридные орбитали. На двух орбиталях находится по одному электрону, эти орбитали взаимодействуют с водородом, на двух других орбиталях находится по паре электронов. Наличие этих двух орбиталей и объясняет уникальные свойства воды.

В молекуле аммиака углы между связями равны примерно 107,3 о, то есть форма молекулы аммиака - тетраэдр, тип связиsр 3 . В образовании связи у молекулы азота принимает участие четыре гибридныеsр 3 -орбитали. На трех орбиталях находится по одному электрону, эти орбитали связаны с водородом, на четвертой АО находится неподеленная пара электронов, которая обуславливает уникальность молекулы аммиака.

МЕХАНИЗМЫ ОБРАЗОВАНИЯ КОВАЛЕНТНОЙ СВЯЗИ.

МВС позволяет различать три механизма образования ковалентной связи: обменный, донорно-акцепторный, дативный.

Обменный механизм . К нему относят те случаи образования химической связи, когда каждый из двух связываемых атомов выделяет для обобществления по одному электрону, как бы обмениваясь ими. Для связывания ядер двух атомов нужно, чтобы электроны находились в пространстве между ядрами. Эта область в молекуле называется областью связывания (область наиболее вероятного пребывания электронной пары в молекуле). Чтобы произошел обмен не спаренными электронами у атомов необходимо перекрывание атомных орбиталей (рис. 10,11). В этом и заключается действие обменного механизма образования ковалентной химической связи. Атомные орбитали могут перекрываться только в том случае, если они обладают одинаковыми свойствами симметрии относительно межъядерной оси (рис. 10, 11, 22).

Рис. 22. Перекрывание АО, не приводящее к образованию химической связи.

Донорно-акцепторный и дативный механизмы .

Донорно-акцепторный механизм связан с передачей неподеленной пары электронов от одного атома на вакантную атомную орбиталь другого атома. Например, образование иона - :

Вакантная р-АО в атоме бора в молекуле BF 3 акцептирует пару электронов от фторид-иона (донор). В образовавшемся анионе четыре ковалентные связи В-Fравноценны по длине и энергии. В исходной молекуле все три связи В-Fобразовались по обменному механизму.

Атомы, внешняя оболочка которых состоит только из s- или р-электронов, могут быть либо донорами, либо акцепторами неподеленной пары электронов. Атомы, у которых валентные электроны находятся и наd-АО, могут одновременно выступать и в роли доноров, и в роли акцепторов. Чтобы различить эти два механизма ввели понятия дативного механизма образования связи.

Простейший пример проявления дативного механизма - взаимодействие двух атомов хлора.

Два атома хлора в молекуле хлора образуют ковалентную связь по обменному механизму, объединяя свои неспаренные 3р-электроны. Кроме того, атом Сl- 1 передает неподеленную пару электронов 3р 5 - АО атому Сl- 2 на вакантную 3d-АО, а атом Сl- 2 такую же пару электронов на вакантную 3d-АО атома Сl- 1. Каждый атом выполняет одновременно функции акцептора и донора. В этом и есть дативный механизм. Действие дативного механизма повышает прочность связи, поэтому молекула хлора прочнее молекулы фтора.

КОМПЛЕКСНЫЕ СОЕДИНЕНИЯ.

По принципу донорно-акцепторного механизма образуется огромный класс сложных химических соединений - комплексные соединения.

Комплексные соединения - это соединения, имеющие в своем составе сложные ионы, способные к существованию как в кристаллическом виде, так и в растворе, включающие центральный ион или атом, связанный с отрицательно заряженными ионами или нейтральными молекулами ковалентными связями, образованными по донорно-акцепторному механизму.

Структура комплексных соединений по Вернеру.

Комплексные соединения состоят из внутренней сферы (комплексный ион) и внешней сферы. Связь между ионами внутренней сферы осуществляется по донорно-акцепторному механизму. Акцепторы называются комплексообразователями, ими часто могут быть положительные ионы металлов (кроме металлов IAгруппы), имеющие вакантные орбитали. Способность к комплексообразованию возрастает с увеличением заряда иона и уменьшением его размера.

Доноры электронной пары называются лигандами или аддендами. Лигандами являются нейтральные молекулы или отрицательно заряженные ионы. Количество лигандов определяется координационным числом комплексообразователя, которое, как правило, равно удвоенной валентности иона-комплексообразователя. Лиганды бывают монодентантными и полидентантными. Дентантность лиганда определяется числом координационных мест, которые лиганд занимает в координационной сфере комплексообразователя. Например, F - - монодентантный лиганд,S 2 O 3 2- - бидентантный лиганд. Заряд внутренней сферы равен алгебраической сумме зарядов составляющих ее ионов. Если внутренняя сфера имеет отрицательный заряд – это анионный комплекс, если положительный – катионный. Катионные комплексы называют по имени иона-комплексообразователя по-русски, в анионных комплексах комплексообразователь называется по-латыни с добавлением суффикса –ат . Связь между внешней и внутренней сферами в комплексном соединении – ионная.

Пример: K 2 – тетрагидроксоцинкат калия, анионный комплекс.

    2- - внутренняя сфера

    2K + - внешняя сфера

    Zn 2+ - комплексообразователь

    OH – - лиганды

    координационное число – 4

    связь между внешней и внутренней сферами ионная:

K 2 = 2K + + 2- .

    связь между ионом Zn 2+ и гидроксильными группами – ковалентная, образованная по донорно-акцепторному механизму:OH – - доноры,Zn 2+ - акцептор.

Zn 0: … 3d 10 4s 2

Zn 2+ : … 3d 10 4s 0 p 0 d 0

Типы комплексных соединений :

1. Аммиакаты - лиганды молекулы аммиака.

Cl 2 – хлорид тетраамминмеди (II). Аммиакаты получают действием аммиака на соединения, содержащие комплексообразователь.

2. Гидроксосоединения - лиганды ОН - .

Na – тетрагидроксоалюминат натрия. Получают гидроксокомплексы действием избытка щелочи на гидроксиды металлов, обладающие амфотерными свойствами.

3. Аквакомплексы - лиганды молекулы воды.

Cl 3 – хлорид гексааквахрома (III). Аквакомплексы получают взаимодействием безводных солей с водой.

4. Ацидокомплексы - лиганды анионы кислот – Cl - ,F - ,CN - ,SO 3 2- ,I – ,NO 2 – ,C 2 O 4 – и др.

K 4 – гексацианоферрат (II) калия. Получают взаимодействием избытка соли, содержащей лиганд на соль, содержащую комплексообразователь.

МЕТОД МОЛЕКУЛЯРНЫХ ОРБИТАЛЕЙ.

МВС достаточно хорошо объясняет образование и структуру многих молекул, но этот метод не универсален. Например, метод валентных связей не даёт удовлетворительного объяснения существованию иона
, хотя еще в конце XIX века было установлено существование довольно прочного молекулярного иона водорода
: энергия разрыва связи составляет здесь 2,65эВ. Однако никакой электронной пары в этом случае образовываться не может, поскольку в состав иона
входит всего один электрон.

Метод молекулярных орбиталей (ММО) позволяет объяснить ряд противоречий, которые нельзя объяснить, используя метод валентных связей.

Основные положения ММО.

    При взаимодействии двух атомных орбиталей, образуются две молекулярные орбитали. Соответственно, при взаимодействии n-атомных орбиталей, образуется n-молекулярных орбиталей.

    Электроны в молекуле в равной степени принадлежат всем ядрам молекулы.

    Из двух образовавшихся молекулярных орбиталей, одна обладает более низкой энергией, чем исходная, это связывающая молекулярная орбиталь , другая обладает более высокой энергией чем исходная, это разрыхляющая молекулярная орбиталь .

    В ММО используют энергетические диаграммы без масштаба.

    При заполнении энергетических подуровней электронами, используют те же правила, что и для атомных орбиталей:

    принцип минимальной энергии, т.е. в первую очередь заполняются подуровни, обладающие меньшей энергией;

    принцип Паули: на каждом энергетическом подуровне не может быть больше двух электронов с антипараллельными спинами;

    правило Хунда: заполнение энергетических подуровней идёт таким образом, чтобы суммарный спин был максимальным.

    Кратность связи. Кратность связи в ММО определяется по формуле:

, когда К p = 0, связь не образуется.

Примеры.

1. Может ли существовать молекула Н 2 ?

Рис. 23. Схема образования молекулы водорода Н 2 .

Вывод: молекула Н 2 будет существовать, так как кратность связи Кр > 0.

2. Может ли существовать молекула Не 2 ?

Рис. 24. Схема образования молекулы гелия He 2 .

Вывод: молекула Не 2 не будет существовать, так как кратность связи Кр = 0.

3. Может ли существовать частица Н 2 + ?

Рис. 25. Схема образования частицы Н 2 + .

Частица Н 2 + может существовать, так как кратность связи Кр > 0.

4. Может ли существовать молекула О 2 ?

Рис. 26. Схема образования молекулы О 2 .

Молекула О 2 существует. Из рис.26 следует, что у молекулы кислорода имеется два неспаренных электрона. За счет этих двух электронов молекула кислорода парамагнитна.

Таким образом метод молекулярных орбиталей объясняет магнитные свойства молекул.

МЕЖМОЛЕКУЛЯРНОЕ ВЗАИМОДЕЙСТВИЕ.

Все межмолекулярные взаимодействия можно разделить на две группы: универсальные испецифические . Универсальные проявляются во всех молекулах без исключения. Эти взаимодействия часто называютсвязью или силами Ван-дер-Ваальса . Хотя эти силы слабые (энергия не превышает восемь кДж/моль), они являются причиной перехода большинства веществ из газообразного состояния в жидкое, адсорбции газов поверхностями твердых тел и других явлений. Природа этих сил электростатическая.

Основные силы взаимодействия:

1). Диполь – дипольное (ориентационное) взаимодействие существует между полярными молекулами.

Ориентационное взаимодействие тем больше, чем больше дипольные моменты, меньше расстояния между молекулами и ниже температура. Поэтому чем больше энергия этого взаимодействия, тем до большей температуры нужно нагреть вещество, чтобы оно закипело.

2). Индукционное взаимодействие осуществляется, если в веществе имеется контакт полярных и неполярных молекул. В неполярной молекуле индуцируется диполь в результате взаимодействия с полярной молекулой.

Cl  + - Cl  - … Al  + Cl  - 3

Энергия этого взаимодействия возрастает с увеличением поляризуемости молекул, то есть способности молекул к образованию диполя под воздействием электрического поля. Энергия индукционного взаимодействия значительно меньше энергии диполь-дипольного взаимодействия.

3). Дисперсионное взаимодействие – это взаимодействие неполярных молекул за счет мгновенных диполей, возникающих за счет флуктуации электронной плотности в атомах.

В ряду однотипных веществ дисперсионное взаимодействие возрастает с увеличением размеров атомов, составляющих молекулы этих веществ.

4) Силы отталкивания обусловлены взаимодействием электронных облаков молекул и проявляются при их дальнейшем сближении.

К специфическим межмолекулярным взаимодействиям относятся все виды взаимодействий донорно-акцепторного характера, то есть, связанные с переносом электронов от одной молекулы к другой. Образующаяся при этом межмолекулярная связь обладает всеми характерными особенностями ковалентной связи: насыщаемостью и направленностью.

Химическая связь, образованная положительно поляризованным водородом, входящим в состав полярной группы или молекулы и электроотрицательным атомом другой или той же молекулы, называется водородной связью. Например, молекулы воды можно представить следующим образом:

Сплошные черточки – ковалентные полярные связи внутри молекул воды между атомами водорода и кислорода, точками обозначены водородные связи. Причина образования водородных связей состоит в том, что атомы водорода практически лишены электронных оболочек: их единственные электроны смещены к атомам кислорода своих молекул. Это позволяет протонам, в отличие от других катионов, приближаться к ядрам атомов кислорода соседних молекул, не испытывая отталкивания со стороны электронных оболочек атомов кислорода.

Водородная связь характеризуется энергией связи от 10 до 40 кДж/моль. Однако этой энергии достаточно, чтобы вызвать ассоциацию молекул, т.е. их ассоциацию в димеры или полимеры, которые в ряде случаев существуют не только в жидком состоянии вещества, но сохраняются и при переходе его в пар.

Например, фтороводород в газовой фазе существует в виде димера.

В сложных органических молекулах существуют как межмолекулярные водородные связи так и внутримолекулярные водородные связи.

Молекулы с внутримолекулярными водородными связями не могут вступать в межмолекулярные водородные связи. Поэтому вещества с такими связями не образуют ассоциатов, более летучи, имеют более низкие вязкости, температуры плавления и кипения, чем их изомеры, способные образовывать межмолекулярные водородные связи.

Вариант 1.



1. Заряд ядра атома +8 имеют атомы химического элемента:
Б. Кислорода.

2. Число общих электронных пар в молекуле хлора:
В. Три.

3. Ковалентная полярная связь имеется в молекуле вещества, формула которого:
Б. СО2.

4. Степень окисления азота в ряду веществ, формулы которых N2-NO-NО2-HNО3:
А. Повышается от 0 до +5.

5. Структурная формула водородного соединения элемента Э главной подгруппы VI группы Периодической системы:
В. Н-Э-Н.

6. Уравнение химической реакции H2S + С12 = 2НС1 + S соответствует схеме превращения хлора:
A. Cl0→Cl-1

7. Вещество X в ряду превращений С02→ X→Са(НСО3)2→ CО2 имеет формулу:
В. СаСО3.

8. Реактивом на хлорид-анион является катион:
Б. Ag+.


Г. H2SО4 и MgO.

10. Оксид азота (IV) образуется при взаимодействии веществ, формулы которых:
В. НNО3(конц) и Ag.



2P + 3Zn = Zn3P2
Zn3P2 + 3H2O + 4O2 = 3Zn(OH)2 + P2O5
P2O5 + 3H2O = 2H3PO4
2H3PO4 + 6Na = 2Na3PO4 + 3H2
Na3PO4 + 3AgNO3 = Ag3PO4↓+ 3NaNO3


Zn3P2-3 + 3H2O + 4O20 = 3Zn(OH)2 + P2+5O5-2
O2 0 → 2O -2 +2 e, окислитель
P -3 → P +5 - 8 е, восстановитель


Na3PO4 + 3AgNO3 = Ag3PO4↓ + 3NaNO3
3Na+ + PO4 3-+ 3Ag+ + 3NO3- = Ag3PO4↓+ 3Na+ + 3NO3-
PO4 3-+ 3Ag+= Ag3PO4↓

14. Вычислите массу (в кг) хлороводорода, который получается при взаимодействии 4,48 м3 хлора с избытком водорода.
n(Cl2) = 4480дм3/22,4 дм3/моль = 200моль
n (НСl) = 2n (Cl2) = 400 моль
m (НСl) = 400моль*36,5г/моль = 14600 г = 14,6 кг

15. Назовите химический элемент, имеющий изотоп, в ядре которого отсутствуют нейтроны.
водород

Вариант 2.


ЧАСТЬ А. Тестовые задания с выбором ответа


1. Заряд ядра атома +17 имеют атомы химического элемента:
Г. Хлора.

2. Число общих электронных пар в молекуле водорода:
А. 1.

3. Ковалентная неполярная связь имеется в молекуле вещества, формула которого:
А. N2.

4. Степень окисления фосфора в ряду веществ, формулы которых Са3Р2-Р-Р2О3-Р2О5:
Б. Повышается от -3 до +5.

5. Структурная формула водородного соединения элемента Э главной подгруппы V группы Периодической системы:
Г. Н-Э-Н.
Н

6. Уравнение химической реакции 2SО2 + О2 = 2SО3 соответствует схеме превращения серы:
В. S+4→ S+6.

7. Вещество X в ряду превращений N2→ NH3→ X→ NО2 имеет формулу:
Б. NO.

8. Реактивом на карбонат-анион является катион:
А. Н+.

9. Химическая реакция возможна между веществами, формулы которых:
В. Р2О5 и NaOH.

10. Оксид серы (IV) не образуется при взаимодействии веществ, формулы которых:
Г. СаСО3 и H2SО4.

ЧАСТЬ Б. Задания со свободным ответом



1. Mg + S = MgS
2. 2 MgS + ЗО2 = 2MgО + 2SО2,
3. 2SO2 + O2 = 2SO3
4. SO3 + Na2O = Na2SO4
5. Na2SO4 + BaCl2 = BaSO4 ↓+ 2NaCl

12. Превращение 2 из задания 11 рассмотрите с точки зрения ОВР.
2 MgS-2 + ЗО20 = 2MgО-2 + 2S+4О2-2,
S-2 → S+4 , -6e, восстановитель
O20 → 2O-2 +2*2е, окислитель

13. Из задания 11 выберите реакцию ионного обмена и запишите ее в ионном виде.
Na2SO4 + BaCl2 = BaSO4 ↓+ 2NaCl
SO42- + Ba2+ = BaSO4 ↓

14. Вычислите массу (в кг) аммиака, который получается при взаимодействии 2 кмоль азота с избытком водорода.
N2 + 3H2 = 2NH3
n(NH3) = 2n(N2) = 4кмоль = 4000 моль
m(NH3) = 4000 моль *17 г/моль = 68000 г = 68 кг.

15. Назовите химический элемент, который в соединениях никогда не проявляет положительную степень окисления.
Фтор

Вариант 3.


ЧАСТЬ А. Тестовые задания с выбором ответа


1. Заряд ядра атома +14 имеют атомы химического элемента:
В. Кремния.

2. Число общих электронных пар в молекуле брома:
А. 1.

3. Ковалентная полярная связь имеется в веществе, формула которого:
Б. H2S.

4. Степень окисления серы в ряду веществ, формулы которых SО3-SО2-S-H2S:
Г. Понижается от +6 до -2.

5. Структурная формула водородного соединения элемента Э главной подгруппы VII группы Периодической системы:
А. Н-Э.

6. Уравнение химической реакции 4NH3 + 5О2 = 4NO + 6Н2О соответствует схеме превращения азота:
В. N-3→ N+2.

7. Вещество X в ряду превращений РН3→ Р2О5 → X→ Са3(РО4)2 имеет формулу:
А. Н3РО4.

8. Реактивом на сульфат-анион является катион:
В. Ва2+.

9. Химическая реакция возможна между веществами, формулы которых:
А. СО2 и NaOH.

10. Оксид углерода (IV) образуется при взаимодействии веществ, формулы которых:
Б. СаСО3 и НС1.

ЧАСТЬ Б. Задания со свободным ответом


11. Запишите уравнения реакций, с помощью которых можно осуществить превращения согласно схеме:
SiH4→ SiО2 →Na2SiО3→ H2SiО3 →SiО2→ Si.

1. SiH4 + 2O2 = SiO2 + 2H2O
2. SiO2 + Na2O = Na2SiO3
3. Na2SiO3 + 2HCl = H2SiO3↓ + 2NaCl
4. H2SiO3 = SiO2 + H2O
5. SiO2+2C---> Si + 2CO

12. Превращение 5 из задания 11 рассмотрите с точки зрения ОВР.
Si+4O2+2C0---> Si0 + 2C+2O
Si+4 →Si0 +4е, окислитель
C0 →C+2 -2е, восстановитель

13. Из задания 11 выберите реакцию ионного обмена и запишите ее в ионном виде.
Na2SiO3 + 2HCl = H2SiO3↓ + 2NaCl
SiO32- + 2H+ = H2SiO3↓

14. Вычислите массу (в кг) хлорида аммония, который образуется при взаимодействии 11,2 м3 хлороводорода с избытком аммиака.
HCl + NH3 = NH4Cl
n(HCl) = n(NH4Cl) = 11200 дм3/ 22,4 дм3/моль = 500 моль
m(NH4Cl) = 500 моль *56,5 г/моль = 28250 г = 28,250 кг.

15. Расположите химические элементы фосфор, кислород, серу, хлор в порядке увеличения неметаллических свойств.
Фосфор, сера, кислород, хлор

Вариант 4.


ЧАСТЬ А. Тестовые задания с выбором ответа


1. Заряд ядра атома +16 имеют атомы химического элемента:
В. Серы.

2. Число общих электронных пар в молекуле азота:
В. 3.

3. Ковалентная неполярная связь имеется в веществе, формула которого:
В. О2.

4. Степень окисления углерода в ряду веществ, формулы которых СН4-С-СО-СО2:
Б. Повышается от -4 до +4.

5. Структурная формула водородного соединения элемента Э главной подгруппы IV группы Периодической системы:
В. Н-Э-Н

6. Уравнение химической реакции Си + 4HNО3 = CU(NО3)2 + 2NО2 + 2Н2О соответствует схеме превращения азота:
Г. N+5 →N+4.

7. Вещество X в ряду превращений S→ S02→ X→ Na2SО3 имеет формулу:
Г. H2SО3.

8. Реактивом на фосфат-анион является катион:
Г. Ag+.

9. Химическая реакция возможна между веществами, формулы которых:
Б. СО2 и Са(ОН)2.

10. Кремниевая кислота образуется при взаимодействии веществ, формулы которых:
В. Na2SiО3 и НС1.

ЧАСТЬ Б. Задания со свободным ответом


11. Запишите уравнения реакций, с помощью которых можно осуществить превращения согласно схеме:
N2 →NH3 →NО→NО2→ HNО3→ KNО3.

1. N2 + 3H2 =2NH3
2. 4NH3 + 5O2 = 4NO + 6H2O
3. 2NO + O2 = 2NO2
4. 4NO2 + О2 + 2Н2О → 4HNO3
5. HNO3 + KOH =KNO3 + H2O

12. Превращение 2 в задании 11 рассмотрите с точки зрения ОВР.
4N-3H3 + 5O20 = 4N+2O-2 + 6H2O
N-3 ->N+2, -5е, восстановитель
O20-> 2O-2 ,+ 2*2е, окислитель

13. Из задания 11 выберите реакцию ионного обмена и запишите ее в ионном виде.
HNO3 + KOH =KNO3 + H2O
H+ + OH- = H2O

14. Вычислите массу (в кг) оксида серы (IV), образовавшегося при сгорании 4,48 м3 сероводорода в избытке кислорода.
2H2S + 3O2 = 2SO2 + 2H2O
n(H2S) = n(SO2) = 44800 дм3/ 22,4 дм3/моль = 2000 моль
m(SO2) = 2000 моль *64 г/моль = 128000 г = 128 кг

15. Назовите химический элемент самый распространенный:
А. В земной коре:

кислород
Б. Во Вселенной:
водород

В результате изучения данной темы вы узнаете:

  • Почему молекула воды полярная, углекислого газа – нет.
  • Какова максимальная валентность азота в соединениях.
  • Почему вода имеет аномально высокие температуры плавления и кипения.

В результате изучения данной темы вы научитесь:

  • Определять характер химической связи (ковалентная полярная и неполярная, ионная, водородная, металлическая) в различных соединениях.
  • Определять геометрическую форму молекул на основе анализа их электронного строения с привлечением представлений о гибридизации атомных орбиталей.
  • Прогнозировать свойства веществ на основе сведений о природе химической связи и типах кристаллических решеток.

Учебные вопросы:

5.1. Ковалентная связь

Химическая связь образуется при сближении двух или большего числа атомов, если в результате их взаимодействия происходит понижение полной энергии системы. Наиболее устойчивыми электронными конфигурациями внешних электронных оболочек атомов являются конфигурации атомов благородных газов, состоящие из двух или восьми электронов. Внешние электронные оболочки атомов других элементов содержат от одного до семи электронов, т.е. являются незавершенными. При образовании молекулы атомы стремятся приобрести устойчивую двухэлектронную или восьмиэлектронную оболочки. В образовании химической связи принимают участие валентные электроны атомов.

Ковалентной называется химическая связь между двумя атомами, которая образуется за счет электронных пар, принадлежащих одновременно этим двум атомам.

Существует два механизма образования ковалентной связи: обменный и донорно – акцепторный.

5.1.1. Обменный механизм образования ковалентной связи

Обменный механизм образования ковалентной связи реализуется за счет перекрывания электронных облаков электронов, принадлежащих различным атомам. Например, при сближении двух атомов водорода происходит перекрывание 1s электронных орбиталей. В результате возникает общая пара электронов, одновременно принадлежащая обоим атомам. При этом химическая связь образуется электронами, имеющими антипараллельные спины, рис. 5.1.

Рис. 5.1. Образование молекулы водорода из двух атомов Н

5.1.2. Донорно – акцепторный механизм образования ковалентной связи

При донорно – акцепторном механизме образования ковалентной связи связь также образуется с помощью электронных пар. Однако в этом случае однин атом (донор) предоставляет свою электронную пару, а другой атом (акцептор) участвует в образовании связи своей свободной орбиталью. Примером реализации донорно-акцепторной связи является образование иона аммония NH 4 + при взаимодействии аммиака NH 3 с катионом водорода H + .

В молекуле NH 3 три электронные пары образуют три связи N – H, четвертая, принадлежащая атому азота электронная пара является неподеленной. Эта электронная пара может дать связь с ионом водорода, который имеет свободную орбиталь. В результате получается ион аммония NH 4 + , рис. 5.2.

Рис. 5.2. Возникновение донорно-акцепторной связи при образовании иона аммония

Необходимо отметить, что существующие в ионе NH 4 + четыре ковалентных связи N – H равноценны. В ионе аммония невозможно выделить связь, образованную по донорно-акцепторному механизму.

5.1.3. Полярная и неполярная ковалентная связь

Если ковалентная связь образуется одинаковыми атомами, то электронная пара располагается на одинаковом расстоянии между ядрами этих атомов. Такая ковалентная связь называется неполярной. Примером молекул с неполярной ковалентной связью являются Н 2 , Cl 2 , О 2 , N 2 и др.

В случае полярной ковалентной связи общая электронная пара смещена к атому с большей электроотрицательностью. Этот тип связи реализуется в молекулах, образованных различными атомами. Ковалентная полярная связь имеет место в молекулах HCl, HBr, CO, NO и др. Например, образование полярной ковалентной связи в молекуле HCl можно представить схемой, рис. 5.3:

Рис. 5.3. Образование ковалентной полярной связи в молекуле НС1

В рассматриваемой молекуле электронная пара смещена к атому хлора, поскольку его электроотрицательность (2,83) больше, чем электроотрицательность атома водорода (2,1).

5.1.4. Дипольный момент и строение молекул

Мерой полярности связи является ее дипольный момент μ:

μ = е l ,

где е – заряд электрона, l – расстояние между центрами положительного и отрицательного зарядов.

Дипольный момент – это векторная величина. Понятия «дипольный момент связи» и «дипольный момент молекулы» совпадают только для двухатомных молекул. Дипольный момент молекулы равен векторной сумме дипольных моментов всех связей. Таким образом, дипольный момент многоатомной молекулы зависит от ее строения.

В линейной молекуле СО 2 , например, каждая из связей С–О полярна. Однако молекула СО 2 в целом неполярна, так как дипольные моменты связей компенсируют друг друга (рис. 5.4). Дипольный момент молекулы углекислого газа m = 0.

В угловой молекуле Н 2 О полярные связи Н–О расположены под углом 104,5 o . Векторная сумма дипольных моментов двух связей Н–О выражается диагональю параллелограмма (рис. 5.4). В результате дипольный момент молекулы воды m не равен нулю.

Рис. 5.4. Дипольные моменты молекул СО 2 и Н 2 О

5.1.5. Валентность элементов в соединениях с ковалентной связью

Валентность атомов определяется числом неспаренных электронов, участвующих в образовании общих электронных пар с электронами других атомов. Имеющие один неспаренный электрон на внешнем электронном слое атомы галогенов в молекулах F 2 , НCl, PBr 3 и CCl 4 одновалентны. Элементы подгруппы кислорода содержат два неспаренных электрона на внешнем слое, поэтому в таких соединениях как O 2 , Н 2 О, Н 2 S и SCl 2 они двухвалентны.

Поскольку помимо обычных ковалентных связей в молекулах может образовываться связь по донорно-акцепторному механизму, валентность атомов зависит также от наличия у них неподеленных электронных пар и свободных электронных орбиталей. Количественной мерой валентности является число химических связей, с помощью которых данный атом соединен с другими атомами.

Максимальная валентность элементов как правило не может превышать номер группы, в которой они находятся. Исключение составляют элементы побочной подгруппы первой группы Cu, Ag, Au, валентность которых в соединениях больше единицы. К валентным относятся прежде всего электроны внешних слоев, однако для элементов побочных подгрупп в образовании химической связи принимают участие и электроны предпоследних (предвнешних) слоев.

5.1.6. Валентность элементов в нормальном и возбужденном состояниях

Валентность большинства химических элементов зависит от того, находятся эти элементы в нормальном или возбужденном состоянии. Электронная конфигурация атома Li: 1s 2 2s 1 . Атом лития на внешнем уровне имеет один неспаренный электрон, т.е. литий одновалентен. Необходима очень большая затрата энергии, связанная с переходом 1s-электрона на 2р-орбиталь, чтобы получить трехвалентный литий. Эта затрата энергии настолько велика, что не компенсируется энергией, которая выделится при образовании химических связей. В связи с этим не существует соединений трехвалентного лития.

Конфигурация внешнего электронного слоя элементов подгруппы бериллия ns 2 . Это означает, что на внешнем электронном слое у этих элементов на орбитали ns ячейке находится два электрона с противоположными спинами. Элементы подгруппы бериллия не содержат неспаренных электронов, поэтому их валентность в нормальном состоянии равна нулю. В возбужденном состоянии электронная конфигурация элементов подгруппы бериллия ns 1 nр 1 , т.е. элементы образуют соединения, в которых они двухвалентны.

Валентные возможности атома бора

Рассмотрим электронную конфигурацию атома бора в основном состоянии: 1s 2 2s 2 2р 1 . Атом бора в основном состоянии содержит один неспаренный электрон (рис. 5.5), т.е. он одновалентен. Однако для бора не характерно образование соединений в которых он одновалентен. При возбуждении атома бора происходит переход одного 2s-электрона на 2р-орбиталь (рис. 5.5). Атом бора в возбужденном состоянии имеет 3 неспаренных электрона и может образовывать соединения, в которых его валентность равна трем.

Рис. 5.5. Валентные состояния атома бора в нормальном и возбужденном состояниях

Энергия, затраченная на переход атома в возбужденное состояние в пределах одного энергетического уровня, как правило, с избытком компенсируется энергией, выделяющейся при образовании дополнительных связей.

Благодаря наличию в атоме бора одной свободной 2р-орбитали, бор в соединениях может образовывать четвертую ковалентную связь, выступая в роли акцептора электронной пары. На рис.5.6 показано как происходит взаимодействие молекулы BF с ионом F – , в результате которого образуется ион – , в котором бор образует четыре ковалентных связи.

Рис. 5.6. Донорно-акцепторный механизм образования четвертой ковалентной связи у атома бора

Валентные возможности атома азота

Рассмотрим электронное строение атома азота (рис. 5.7).

Рис. 5.7. Распределение электронов на орбиталях атома азота

Из представленной схемы видно, что азот имеет три неспаренных электрона, он может образовывать три химические связи и его валентность равна трем. Переход атома азота в возбужденное состояние невозможен, поскольку второй энергетический уровень не содержит d–орбиталей. Вместе с тем атом азота может предоставить неподеленную электронную пару внешних электронов 2s 2 атому, имеющему свободную орбиталь (акцептору). В результате возникает четвертая химическая связь атома азота, как это имеет место, например, в ионе аммония (рис. 5.2). Таким образом, максимальная ковалентность (число образованных ковалентных связей) атома азота равна четырем. В своих соединениях азот, в отличие от других элементов пятой группы, не может быть пятивалентным.

Валентные возможности атомов фосфора, серы и галогенов

В отличие от атомов азота, кислорода и фтора, находящиеся в третьем периоде атомы фосфора, серы и хлора имеют свободные 3d-ячейки, на которые могут переходить электроны. При возбуждении атома фосфора (рис. 5.8), у него на внешнем электронном слое оказываются 5 неспаренных электронов. В результате в соединениях атом фосфора может быть не только трех-, но и пятивалентным.

Рис. 5.8. Распределение валентных электронов на орбиталях для атома фосфора, находящегося в возбужденном состоянии

В возбужденном состоянии сера помимо валентности, равной двум, проявляет также валентность, равную четырем и шести. При этом последовательно происходит распаривание 3р и 3s-электронов (рис. 5.9).

Рис. 5.9. Валентные возможности атома серы в возбужденном состоянии

В возбужденном состоянии для всех элементов главной подгруппы V группы, кроме фтора, возможно последовательное распаривание сначала р-, а затем и s-электронных пар. В результате эти элементы становятся трех-, пяти- и семивалентными (рис. 5.10).

Рис. 5.10. Валентные возможности атомов хлора, брома и иода в возбужденном состоянии

5.1.7. Длина, энергия и направленность ковалентной связи

Ковалентная связь, как правило, образуется между атомами неметаллов. Основными характеристиками ковалентной связи являются длина, энергия и направленность.

Длина ковалентной связи

Длина связи – это расстояние между ядрами атомов, образующими эту связь. Ее определяют экспериментальными физическими методами. Оценить величину длины связи можно по правилу аддитивности, согласно которому длина связи в молекуле АВ приблизительно равна полусумме длин связей в молекулах А 2 и В 2:

.

Сверху вниз по подгруппам периодической системы элементов длина химической связи возрастает, поскольку в этом направлении увеличивается радиусы атомов (табл. 5.1). С увеличением кратности связи ее длина уменьшается.

Таблица 5.1.

Длина некоторых химических связей

Химическая связь

Длина связи, пм

Химическая связь

Длина связи, пм

С – С


Энергия связи

Мерой прочности связи является энергия связи. Энергия связи определяется энергией, необходимой для разрыва связи и удаления атомов, образующих эту связь, на бесконечно большое расстояние друг от друга. Ковалентная связь является очень прочной. Ее энергия составляет от нескольких десятков до нескольких сотен кДж/моль. Для молекулы IСl 3 , например, Есвязи ≈40 , а для молекул N 2 и CO Есвязи ≈1000 кДж/моль.

Сверху вниз по подгруппам периодической системы элементов энергия химической связи уменьшается, поскольку в этом направлении увеличивается длина связи (табл. 5.1). С увеличением кратности связи ее энергия возрастает (табл. 5.2).

Таблица 5.2.

Энергий некоторых химических связей

Химическая связь

Энергия связи,

Химическая связь

Энергия связи,

С – С

Насыщаемость и направленность ковалентной связи

Важнейшими свойствами ковалентной связи является ее насыщаемость и направленность. Насыщаемость можно определить как способность атомов образовывать ограниченное число ковалентных связей. Так атом углерода может образовывать только четыре ковалентных связи, а атом кислорода – две. Максимальное число обычных ковалентных связей, которые может образовывать атом (без учета связей, образованных по донорно-акцепторному механизму) равно числу неспаренных электронов.

Ковалентные связи имеют пространственную направленность, поскольку перекрывание орбиталей при образовании одинарной связи происходит по линии, связывающей ядра атомов. Пространственное расположение электронных орбиталей молекулы обуславливают ее геометрию. Углы между химическими связями называют валентными углами.

Насыщаемость и направленность ковалентной связи отличает эту связь от ионной, которая в отличие от ковалентной связи является ненасыщенной и ненаправленной.

Пространственное строение молекул Н 2 O и NH 3

Направленность ковалентной связи рассмотрим на примере молекул Н 2 O и NH 3 .

Молекула H 2 O образуется из атома кислорода и двух атомов водорода. Атом кислорода имеет два неспаренных p-электрона, которые занимают две орбитали, расположенные под прямым углом друг к другу. Атомы водорода имеют неспаренные 1s-электроны. Угол между связями, образованными р-электронами, должен быть близок к углу между орбиталями р-электронов. Экспериментально, однако, найдено, что угол между связями О–Н в молекуле воды равен 104,50. Увеличение угла по сравнению с углом 90 o можно объяснить силами отталкивания, которые действует между атомами водорода, рис. 5.11. Таким образом, молекула Н 2 О имеет угловую форму.

В образовании молекулы NH 3 участвуют три неспаренных p-электрона атома азота, орбитали которых расположены в трех взаимно перпендикулярных направлениях. Следовательно, три связи N–H должны располагаться под углами друг к другу, близкими к 90° (рис. 5.11). Экспериментальное значение угла между связями в молекуле NH 3 равно 107,3°. Отличие значения углов между связями от теоретических обусловлено, как и в случае молекулы воды, взаимным отталкиванием атомов водорода. Кроме того, представленные схемы не учитывают возможность участия двух электронов на орбиталях 2s в образовании химических связей.

Рис. 5.11. Перекрывание электронных орбиталей при образовании химических связей в молекулах Н 2 O (а) и NH 3 (б)

Рассмотрим образование молекулы ВеС1 2 . Атом бериллия в возбужденном состоянии имеет два неспаренных электрона: 2s и 2p. Можно предположить, что атом бериллия должен образовывать две связи: одну связь, образованную s-электроном и одну связь, образованную р-электроном. Эти связи должны иметь различную энергию и различную длину. Молекула ВеС1 2 в таком случае должна быть не линейной, а уголковой. Опыт, однако, показывает, что молекула ВеС1 2 имеет линейное строение и обе химические связи в ней равноценны. Аналогичная ситуация наблюдается при рассмотрении строения молекул BCl 3 и CCl 4 – все связи в этих молекулах равноценны. Молекула ВС1 3 имеет плоское строение, СС1 4 – тетраэдрическое.

Для объяснения строения таких молекул, как ВеС1 2 , BCl 3 и CCl 4 , Полинг и Слейтер (США) ввели представление о гибридизации атомных орбиталей. Они предложили заменить несколько атомных орбиталей, не очень сильно отличающихся своей энергией, таким же числом равноценных орбиталей, называемых гибридными. Эти гибридные орбитали составляются из атомных в результате их линейной комбинации.

Согласно Л. Полингу при образовании химических связей атомом, имеющим электроны различного типа в одном слое и, следовательно, не очень сильно отличающиеся своей энергией (например, s и p) возможно изменение конфигурации орбиталей различных типов, при которой происходит их выравнивание по форме и энергии. В результате образуются гибридные орбитали, имеющие асимметричную форму и сильно вытянутые по одну сторону от ядра. Важно подчеркнуть, что модель гибридизации используется в том случае, когда в образовании связей участвуют электроны различного типа, например s и р.

5.1.8.2. Различные типы гибридизации атомных орбиталей

sp- гибридизация

Гибридизация одной s - и одной р - орбитали (sp - гибридизация) реализуется, например, при образовании хлорида бериллия. Как было показано выше, в возбужденном состоянии атом Be имеет два неспаренных электрона, один из которых занимает 2s-орбиталь, а другой – 2p-орбиталь. При образовании химической связи эти две различные орбитали трансформируются в две одинаковые гибридные орбитали, направленные под углом 180° друг к другу (рис. 5.12). Линейное расположение двух гибридных орбиталей отвечает минимальному их отталкиванию друг от друга. В результате молекула BeCl 2 имеет линейное строение – все три атома расположены на одной линии.

Рис. 5.12. Схема перекрывания электронных орбиталей при образовании молекулы BeCl 2

Строение молекулы ацетилена; сигма- и пи-связи

Рассмотрим схему перекрывания электронных орбиталей при образовании молекулы ацетилена . В молекуле ацетилена каждый атом углерода находится в sp–гибридном состоянии. Две sp–гибридные орбитали расположены под углом 1800 друг к другу; они образуют одну σ -связь между атомами углерода и две σ -связи с атомами водорода (рис. 5.13).

Рис. 5.13. Схема образования s -связей в молекуле ацетилена

σ -связью называют связь, образованную в результате перекрывания электронных орбиталей по линии, соединяющей ядра атомов.

Каждый атом углерода в молекуле ацетилена содержит еще по два р-электрона, которые не принимают участия в образовании σ -связей. Электронные облака этих электронов располагаются во взаимно перпендикулярных плоскостях и, перекрываясь друг с другом, образуют еще две π -связи между атомами углерода за счет бокового перекрывания негибридных р –облаков (рис. 5.14).

π -связь – это ковалентная химическая связь, образованная в результате увеличения электронной плотности по обе стороны от линии, соединяющей ядра атомов.

Рис. 5.14. Схема образования σ - и π -связей в молекуле ацетилена.

Таким образом, в молекуле ацетилена между атомами углерода образуется тройная связь, которая состоит из одной σ - связи и двух π -связей; σ -связи являются более прочными, чем π - связи.

sp2- гибридизация

Строение молекулы BCl 3 можно объяснить с позиций sp 2 - гибридизации . Находящийся в возбужденном состоянии атом бора на внешнем электронном слое содержит один s-электрон и два p-электрона, т.е. три неспаренных электрона. Эти три электронных облака можно преобразовать в три равноценных гибридных орбитали. Минимальному отталкиванию трех гибридных орбиталей друг от друга соответствует их расположение в одной плоскости под углом 120 o друг к другу (рис. 5.15). Таким образом, молекула BCl 3 имеет плоскую форму.

Рис. 5.15. Плоское строение молекулы BCl 3

sp 3 - гибридизация

Валентные орбитали атома углерода (s, р x , р y , р z) можно преобразовать в четыре равноценных гибридные орбитали, которые расположены в пространстве под углом 109,5 o друг к другу и направлены к вершинам тетраэдра, в центре которого находится ядро атома углерода (рис. 5.16).

Рис. 5.16. Тетраэдрическое строение молекулы метана

5.1.8.3. Гибридизация с участием неподеленных электронных пар

Модель гибридизации может использоваться для объяснения строения молекул, в которых помимо связывающих, имеются также и неподеленные электронные пары. В молекулах воды и аммиака общее число электронных пар центрального атома (О и N) равно четырем. При этом в молекуле воды имеются две, а в молекуле аммиака – одна неподеленная электронная пара. Образование химических связей в данных молекулах можно объяснить, предполагая, что неподеленные электронные пары также могут заполнять гибридные орбитали. Неподеленные электронные пары занимают в пространстве значительно больше места, чем связывающие. В результате отталкивания, которое возникает между неподеленными и связывающими электронными парами происходит уменьшение валентных углов в молекулах воды и аммиака, которые оказываются меньше, чем 109,5 o .

Рис. 5.17. sp 3 – гибридизация с участием неподеленных электронных пар в молекулах H 2 O (А) и NH 3 (Б)

5.1.8.4. Установление типа гибридизации и определение строения молекул

Для установления типа гибридизации, а, следовательно, и структуры молекул необходимо использовать следующие правила.

1. Тип гибридизации центрального атома, не содержащего неподеленных электронных пар, определяется числом сигма связей. Если таких связей две имеет место sp-гибридизация, три - sp 2 -гибридизация, четыре - sp 3 -гибридизация. Неподеленные электронные пары (в отсутствии связей, образованных по донорно-акцепторному механизму) отсутствуют в молекулах, образованных атомами бериллия, бора, углерода, кремния, т.е. у элементов главных подгрупп II - IV групп.

2. Если центральный атом содержит неподеленные электронные пары, то число гибридных орбиталей и тип гибридизации определяются суммой числа сигма-связей и числа неподеленных электронных пар. Гибридизация с участием неподеленных электронных пар имеет место в молекулах, образованных атомами азота, фосфора, кислорода, серы, т.е. элементов главных подгрупп V и VI групп.

3. Геометрическая форма молекул определяется типом гибридизации центрального атома (табл. 5.3).

Таблица 5.3.

Валентные углы, геометрическая форма молекул в зависимости от числа гибридных орбиталей и типа гибридизации центрального атома

5.2. Ионная связь

Ионная связь осуществляется путем электростатического притяжения между противоположно заряженными ионами. Эти ионы образуются в результате перехода электронов от одного атома к другому. Ионная связь образуется между атомами, имеющими большие различия электроотрицательностей (обычно больше 1,7 по шкале Полинга), например, между атомами щелочных металлов и галогенов.

Рассмотрим возникновение ионной связи на примере образования NaCl. Из электронных формул атомов Na 1s 2 2s 2 2p 6 3s 1 и Cl 1s 2 2s 2 2p 6 3s 2 3p 5 видно, что для завершения внешнего уровня атому натрия легче отдать один электрон, чем присоединить семь, а атому хлора легче присоединить один, чем отдать семь. В химических реакциях атом натрия отдает один электрон, а атом хлора принимает его. В результате электронные оболочки атомов натрия и хлора превращаются в устойчивые электронные оболочки благородных газов (электронная конфигурация катиона натрия Na + 1s 2 2s 2 2p 6 , а электронная конфигурация аниона хлора Cl – - 1s 2 2s 2 2p 6 3s 2 3p 6). Электростатическое взаимодействие ионов приводит к образованию молекулы NaCl.

Основные характеристики ионной связи и свойства ионных соединений

1. Ионная связь является прочной химической связью. Энергия этой связи составляет величины порядка 300 – 700 кДж/моль.

2. В отличие от ковалентной связи, ионная связь является ненаправленной , поскольку ион может притягивать к себе ионы противоположного знака в любом направлении.

3. В отличие от ковалентной связи, ионная связь является ненасыщенной , так как взаимодействие ионов противоположного знака не приводит к полной взаимной компенсации их силовых полей.

4. В процессе образования молекул с ионной связью не происходит полной передачи электронов, поэтому стопроцентной ионной связи в природе не существует. В молекуле NaCl химическая связь лишь на 80% ионная.

5. Соединения с ионной связью – это твердые кристаллические вещества, имеющие высокие температуры плавления и кипения.

6. Большинство ионных соединений растворяются в воде. Растворы и расплавы ионных соединений проводят электрический ток.

5.3. Металлическая связь

Атомы металлов на внешнем энергетическом уровне содержат небольшое число валентных электронов. Поскольку энергия ионизации атомов металлов невелика, валентные электроны слабо удерживаются в этих атомах. В результате в кристаллической решетке металлов появляются положительно заряженные ионы и свободные электроны. При этом катионы металла находятся в узлах кристаллической их решетки, а электроны свободно перемещаются в поле положительных центров образуя так называемый «электронный газ». Наличие между двумя катионами отрицательно заряженного электрона приводит тому, что каждый катион взаимодействует с этим электроном. Таким образом, металлическая связь – это связь между положительными ионами в кристаллах металлов, которая осуществляется путем притяжения электронов, свободно перемещающихся по всему кристаллу.

Поскольку валентные электроны в металле равномерно распределены по всему кристаллу металлическая связь, как и ионная, является ненаправленной связью. В отличие от ковалентной связи, металлическая связь является ненасыщенной связью. От ковалентной связи металлическая связь отличается также и прочностью. Энергия металлической связи примерно в три – четыре раза меньше энергии ковалентной связи.

Вследствие большой подвижности электронного газа металлы характеризуются высокой электро- и теплопроводностью.

5.4. Водородная связь

В молекулах соединениях HF, H 2 O, NH 3 существуют связи водорода с сильно электроотрицательным элементом (Н–F, Н–O, Н–N). Между молекулами таких соединений могут образовываться межмолекулярные водородные связи . В некоторых органических молекулах, содержащих связи Н–O, Н–N, могут возникать внутримолекулярные водородные связи .

Механизм образования водородной связи имеет частично электростатический, частично донорно – акцепторный характер. При этом донором электронной пары выступают атом сильно электроотрицательного элемента (F, O, N), а акцептором - атомы водорода, соединенные с этими атомами. Как и для ковалентной связи, для водородной связи характерны направленность в пространстве и насыщаемость .

Водородную связь принято обозначать точками: Н ··· F. Водородная связь проявляется тем сильнее, чем больше электроотрицательность атома-партнера и чем меньше его размеры. Она характерна прежде всего для соединений фтора, а также кислорода, в меньшей степени азота, в еще меньшей степени для хлора и серы. Соответственно меняется и энергия водородной связи (табл. 5.4).

Таблица 5.4.

Средние значения энергий водородных связей

Межмолекулярная и внутримолекулярная водородная связь

Благодаря водородным связям молекулы объединяются в димеры и более сложные ассоциаты. Например, образование димера муравьиной кислоты можно представить следующей схемой (рис. 5.18).

Рис. 5.18. Образование межмолекулярных водородных связей в муравьиной кислоте

В воде могут возникать длинные цепи ассоциатов (Н 2 О) n (рис. 5.19).

Рис. 5.19. Образование цепи ассоциатов в жидкой воде за счет межмолекулярных водородных связей

Каждая молекула Н 2 О может образовать четыре водородных связи, а молекула HF – только две.

Водородные связи могут возникать как между различными молекулами (межмолекулярная водородная связь), так и внутри молекулы (внутримолекулярная водородная связь). Примеры образования внутримолекулярной связи для некоторых органических веществ представлены на рис. 5.20.

Рис. 5.20. Образование внутримолекулярной водородной связи в молекулах различных органических соединений

Влияние водородной связи на свойства веществ

Наиболее удобным индикатором существования межмолекулярной водородной связи является температура кипения вещества. Более высокая температура кипения воды (100 o C по сравнению с водородными соединениями элементов подгруппы кислорода (H 2 S, H 2 Se, H 2 Te) объясняется наличием водородных связей: на разрушение межмолекулярных водородных связей в воде необходимо затратить дополнительную энергию.

Водородная связь существенным образом может влиять на структуру и свойства веществ. Существование межмолекулярной водородной связи повышает температуры плавления и кипения веществ. Наличие внутримолекулярной водородной связи приводит к тому, что молекула дезоксирибонуклеиновой кислоты (ДНК) оказывается свернутой в воде двойной спирали.

Водородная связь также играет важную роль в процессах растворения, поскольку растворимость зависит и от способности соединения давать водородные связи с растворителем. В результате содержащие ОН-группы такие вещества, как сахар, глюкоза, спирты, карбоновые кислоты, как правило, хорошо растворимы в воде.

5.5. Типы кристаллических решеток

Твердые вещества, как правило, имеют кристаллическое строение. Частицы, из которых состоят кристаллы (атомы, ионы или молекулы) располагаются в строго определенных точках пространства, образуя кристаллическую решетку. Кристаллическая решетка состоит из элементарных ячеек, которые сохраняют особенности структуры, характерные для данной решетки. Точки, в которых находятся частицы, называются узлами кристаллической решетки . В зависимости от вида частиц, находящихся в узлах решетки и от характера связи между ними различают 4 типа кристаллических решеток.

5.5.1. Атомная кристаллическая решетка

В узлах атомных кристаллических решеток находятся атомы, соединенные между собой ковалентными связями. К веществам, имеющим атомную решетку, относятся алмаз, кремний, карбиды, силициды и т.д. В структуре атомного кристалла невозможно выделить отдельные молекулы, весь кристалл рассматривается как одна гигантская молекула. Структура алмаза показана на рис. 5.21. Алмаз состоит из атомов углерода, каждый из которых связан с четырьмя соседними атомами. Вследствие того, что ковалентные связи прочные, все вещества, имеющие атомные решетки, являются тугоплавкими, твердыми и малолетучими. Они мало растворимы в воде.

Рис. 5.21. Кристаллическая решетка алмаза

5.5.2. Молекулярная кристаллическая решетка

В узлах молекулярных кристаллических решеток находятся молекулы, связанные между собой слабыми межмолекуляриыми силами. Поэтому вещества с молекулярной решеткой имеют малую твердость, они легкоплавки, характеризуются значительной летучестью, мало растворимы в воде, их растворы, как правило, не проводят электрический ток. Веществ c молекулярной кристаллической решеткой известно очень много. Это твердые водород, хлор, оксид углерода(IV) и другие вещества, которые при обычной температуре находятся в газообразном состоянии. Большинство кристаллических органических соединений имеют молекулярную решетку.

5.5.3. Ионная кристаллическая решетка

Кристаллические решетки, в узлах которых находятся ионы, называются ионными . Их образуют вещества с ионной связью, например, галогениды щелочных металлов. В ионных кристаллах нельзя выделить отдельные молекулы, весь кристалл можно рассматривать как одну макромолекулу. Связи между ионами прочные, поэтому вещества с ионной решеткой обладают малой летучестью, высокими температурами плавления и кипения. Кристаллическая решетка хлорида натрия представлена на рис. 5.22.

Рис. 5.22. Кристаллическая решетка хлорида натрия

На этом рисунке светлые шары – ионы Na + , темные – ионы Сl – . Слева на рис. 5.22 показана элементарная ячейка NaCI.

5.5.4. Металлическая кристаллическая решетка

Металлы в твердом состоянии образуют металлические кристаллические решетки. В узлах таких решеток находятся положительные ионы металлов, а валентные электроны свободно перемещаются между ними. Электроны электростатически притягивают катионы, тем самым придавая устойчивость металлической решетке. Такое строение решетки обусловливает высокую теплопроводность, электропроводность и пластичность металлов - при механическом деформировании не происходит разрыва связей и разрушения кристалла, поскольку составляющие его ионы как бы плавают в облаке электронного газа. На рис. 5.23 представлена кристаллическая решетка натрия.

Рис. 5.23. Кристаллическая решетка натрия