Компьютерная симуляция вселенной — жизнь внутри «матрицы». Учёные опровергли теорию о нереальности нашей вселенной

Кадр из фильма "Матрица"

Физики из университетов Бонна и Вашингтона полагают, что они нашли способ, как можно проверить считавшуюся до сих пор чисто философской теорию, что мы живем в гигантской компьютерной симуляции Вселенной .

Как пишут на "arXiv.org" Сайлас Бин, Мартин Дж. Сэвидж и Зохре Давуди, любая имитация, в том числе и очень затратное моделирование Вселенной с помощью сверхмощного компьютера, имеет пределы. Именно эти пределы, если таковые имеются, можно узнать по их воздействию и возникающим сбоям в непрерывных физических процессах.

Способ выявления этих границ исследователи сначала проверили сами на своей модели Вселенной - но лишь на очень небольшой её части. Из-за высокой степени сложности Вселенной сейчас возможна пока только имитация 0,00000000001 миллиметра её уже измеренной части. Тем не менее, даже эта небольшая часть вряд ли отличима от всего образца. Теоретически возможно, что наша Вселенная просто огромная модель.

Теоретическое обоснование симуляция Вселенной

На основе квантовой хромодинамики (КХД), учёные определили ядерное взаимодействие между протонами и нейтронами, между ядрами и их взаимодействие друг с другом. Чтобы заменить пространственно-временной континуум, а, следовательно, структуру Вселенной , они использовали в качестве наименьшей единицы моделирования мелкую кубическую "решетку".

Это только начало, но исследователи представляют себе уже сейчас большие симуляции, в которых можно будет генерировать молекулы, клетки и однажды - сегодня эту вычислительную мощность вообразить невозможно - даже людей. Их было бы невозможно отличить от оригинала. Однако уже сейчас доступно моделирование космологических процессов и поиска пределов этой смоделированной на микро-уровне вселенной.

Является ли наша Вселенная симуляцией? Учёные предлагают для ответа провести моделирование Вселенной

Для обозначения границ потенциальной имитации, в которой мы, согласно теории, возможно, «живём», исследователи воспользовались так называемым пределом Грайзена - Зацепина - Кузьмина (GZK-эффектом). Предел ГЗК является теоретическим верхним пределом энергии космических лучей, исходящих из отдалённых источников. Высокоэнергетические частицы взаимодействуют с фоновым космическим излучением и, проходя большие расстояния, теряют энергию.

Если наша Вселенная является имитацией, то лежащая в её основе решетчатая структура придаст дополнительные свойства таким феноменам, как предел ГЗК. При этом частицы, обладающие высокой энергией, должны двигаться по осям решётки, а не разлетаться по Вселенной равномерно во всех направлениях, как это бывает в обычных наблюдениях.

Возможно ли моделирование Вселенной ?

Как ни фантастически выглядит эта теория, её уже можно проверить с помощью доступных нам сегодня технологий. Проблема может заключаться в том, что структура решетки якобы смоделированной Вселенной могла быть построена на совершенно иной основе, чем это представляют себе учёные. Кроме того, описанный эффект можно будет оценить только в том случае, если верхняя граница структуры решетки, действительно, соответствует ГЗК-пределу.

И тем не менее, стоит хотя бы один раз осуществить поиск вышеописанного эффекта, чтобы увидеть, что наша Вселенная не является результатом компьютерного моделирования, пишет

В романе Михаила Булгакова «Мастер и Маргарита», главный герой - Мастер, в момент отчаяния сжигает свою рукопись, чтобы затем узнать от Воланда, что «рукописи не горят». Насколько красиво это выражение, настолько же оно, кажется, далеким от истины. Николай Гоголь в своё время сжёг второй том «Мёртвых душ», который сейчас навсегда утерян для читателя. Так же как и был бы потерян роман «Мастер и Маргарита», если бы вдруг Булгаков решил его сжечь. Ни один автор в мире не в состоянии написать точно такой же роман.

Но есть одна область человеческого знания, которая довольно-таки хорошо иллюстрирует это выражение «рукописи не горят» - математика. Если бы не было Пифагора, или если бы его труды не дожили до наших дней, наверняка какой-то другой учёный вывел бы ту самую теорему. Более того, смысл этой теоремы не менялся с течением времени. И не изменится, несмотря ни на новые открытия, ни на технический прогресс. Математика - особый вид знаний. Её истины являются объективными, необходимыми и вечными.

Что же такое математические объекты и теоремы, и почему мы познаем их именно таким образом? Существуют ли они где-то в качестве нематериальных объектов в заколдованных садах, ожидая того момента, когда их откроют? Или же они это плод человеческого воображения?

Этот вопрос мучил и разделял учёных не одно столетие. Страшно представить, что математические истины существуют сами по себе. Но если математика - это продукт воображения отдельных ученых, то, что делать с тем фактом, что все мы пользуемся одной и той же математикой? Некоторые утверждают, что теоремы и аксиомы похожи на шахматные фигуры, искусно разработанный вымысел в игре, которую выдумал человек. Но по сравнению с шахматами, математика - неотъемлемая часть всех научных теорий, описывающих устройство вселенной.

Многие математики признаются, что являются приверженцами платонизма. Величайший логик Курт Гедель утверждал, что математические понятия и теории «формируют объективную собственную действительность, которую мы не можем создать или изменить, но только чувствовать и описать». Но если это правда, как люди смогли добраться до этой «скрытой» реальности?

Мы не знаем. Но одна из догадок такова: мы живём во вселенной-модели, созданной компьютером на основе математических законов. Согласно этой теории, некий сверх-продвинутый программист создал эту модель-вселенную, и мы, сами того не зная, являемся её частью. В связи с этим, когда учёные делают открытие какого-либо математического закона - это значит не что иное, как открытие математического кода, который использовал этот таинственный разработчик.

Понятное дело, что это кажется маловероятным. Но философ Оксофордского университета Ник Бостром утверждает, что вероятность, что мы населяем именно такую вселенную гораздо выше, чем может показаться на первый взгляд. Если теоретически такие модели возможны, то, в конце концов, человек создаст такую вселенную - а может даже и несколько. В будущем, убеждены учёные, количество таких вселенных-симуляций будет больше, чем настоящих миров. Говоря языком статистики, с большой долей вероятности, что мы с вами живём во вселенной-симуляции жизни.

Но есть ли какой-либо способ опытным путём проверить эту гипотезу?

Да, такой способ существует. По крайней мере, так утверждают в своей работе учёные-исследователи Сайлас Бин, Зохре Давуди и Мартин Сэвэдж.

До сих пор физики продолжают разрабатывать свою компьютерную симуляцию вселенной. Пока что, учёным удалось создать совсем маленькую её часть, примерно на уровне атомного ядра, основанную на силах природы. Они используют дискретную трёхмерную решётку, чтобы сымитировать часть космоса, а затем запускают специальную программу, чтобы посмотреть, как будут действовать законы физики. Таким образом, они могут проследить движение и столкновение между собой элементарных частиц.

Профессор Бин и его коллеги, занятые в проекте, говорят, что эти компьютерные модели способны сгенерировать слабые, но вполне различимые аномалии - определённые виды асимметрии. Особенно это заметно на высокоэнергетических космических лучах, падающих на землю. Эта асимметрия - свидетельство того, что мы вполне возможно находимся во вселенной-модели.

Готовы ли мы, как Нео, из всем известного фильма «Матрица», выпить красную таблетку, чтобы узнать «насколько глубока кроличья нора»? Не сейчас. Всё это только лишь гипотезы.

Каждый, кто смотрел знаменитый фильм «Матрица», вероятно, спрашивал себя: не живём ли мы в компьютерной симуляции реальности? Двое учёных считают, что смогли ответить на этот вопрос. Зоар Рингель (Еврейский университет в Иерусалиме) и Дмитрий Коврижин (Курчатовский институт) опубликовали совместное исследование проблемы в последнем номере научного журнала Science Advances.

Пытаясь решить проблему компьютерного моделирования квантовой системы, они пришли к выводу, что такая симуляция в принципе невозможна. Создать для неё компьютер нельзя из-за физических возможностей Вселенной.

Учёные, увеличивая число частиц в симуляции, обнаружили, что вычислительные ресурсы, необходимые для моделирования, росли не линейно, а по возрастающей. И для симуляции поведения нескольких сотен электронов требуется компьютер такой мощности, что он должен состоять из гораздо большего числа атомов, чем есть во Вселенной.

Таким образом, компьютер, который мог бы моделировать окружающий нас мир, создать невозможно. Этот вывод учёных утешит не столько тех, кто сомневается в реальности Вселенной, сколько физиков-теоретиков — ведь если нельзя создать компьютер, который будет моделировать и анализировать квантовые явления, то их рабочие места никогда не займут роботы, отметил сайт Американской ассоциации содействия науке, которая издаёт журнал Science Advances.

Один из миллиарда

Не стоит удивляться тому, что серьёзные учёные обсуждают сюжет из области развлекательного кинематографа. В теоретической физике уделяется внимание и куда более причудливым теориям. И некоторые из них с точки зрения стороннего наблюдателя выглядят как чистая фантастика. Одна из интерпретаций квантовой механики (интерпретация Эверетта) предполагает существование параллельных вселенных. А некоторые решения уравнений Эйнштейна теоретически допускают путешествия во времени.

  • Кадр из фильма «Матрица»

Научно обоснованную гипотезу смоделированной природы нашего мира выдвинули не писатели-фантасты. Самое известное обоснование этого высказал профессор Оксфорда Ник Бостром в своей работе «Доказательство симуляции».

Бостром не утверждал прямо, что мир вокруг нас создан при помощи вычислительной техники, но выдвинул три варианта будущего (трилемма Бострома). По мнению учёного, человечество или вымрет раньше, чем сможет достичь стадии «постчеловечества» и получить возможность создания симуляции, или, достигнув этой стадии, не станет её создавать, или же мы уже сейчас живём в компьютерной симуляции.

Гипотеза Бострома — это уже не физика, а философия, но на примере открытия Рингеля и Коврижина видно, как из физического эксперимента можно сделать философские выводы. Особенно если эта философия допускает математические расчёты и прогнозирует технологический прогресс человечества. Поэтому трилеммой интересуются не только теоретики, но и практики: самый известный апологет выкладок Бострома — Илон Маск. В июне 2016 года Маск практически не оставил шансов «реальному миру». Отвечая на вопросы журналистов, генеральный директор компаний Tesla и SpaceX заявил, что вероятность реальности нашего мира — один к миллиарду. Однако убедительных доказательств своего утверждения Маск не привёл.

  • Илон Маск
  • Reuters
  • Brian Snyder

Теория Рингеля и Коврижина опровергает слова Маска и настаивает на полной реальности нашего существования. Но стоит отметить, что их выкладки работают только в том случае, если симуляцию реальности рассматривать как продукт компьютерных технологий.

Впрочем, Бостром предполагал, что симуляция не обязательно должна носить характер компьютерной программы, ведь симулировать реальность могут и сны.

Технологий производства сновидений у человечества пока нет, их примерные технические характеристики неизвестны. Это значит, что для них могут и не потребоваться вычислительные мощности всей Вселенной. Следовательно, вероятность появления технологий симуляции сбрасывать со счетов пока рано.

Страшный сон

Однако ни физики, ни философы такими частностями, как конкретное описание моделирования реальности, не занимаются — науке придётся делать слишком много допущений.

Пока с этим справляются писатели и режиссёры. Идея виртуальной реальности молода, но простое перечисление книг, фильмов и компьютерных игр о ней займёт не одну страницу. При этом в основе большинства из них так или иначе лежит страх перед технологиями.

Самое известное произведение подобного рода — фильм «Матрица» — показывает безрадостную картину: реальность симулируется для эксплуатации человечества, создания золотой клетки для него. И такой характер носит большинство фантастических произведений о симуляции мира, которые почти всегда оборачиваются антиутопией.

В жутком рассказе британского фантаста Харлана Эллисона «У меня нет рта, но я хочу кричать» оставшиеся в живых представители человечества существуют под тотальным контролем компьютера-садиста, который моделирует реальность для того, чтобы придумывать им новые изощрённые пытки.

Герой «Тоннеля под миром» Фредерика Пола с ужасом узнаёт, что он и вся его жизнь созданы всего лишь в рамках модели крупной аварии, в которой он ежедневно умирает страшной смертью, чтобы наутро воскреснуть со стёртой памятью.

  • Кадр из фильма «Ванильное небо»

А в фильме «Ванильное небо» симуляцию реальности используют для того, чтобы больные люди в состоянии криогенной заморозки ощущали себя счастливыми, хотя их проблемы так и остаются нерешёнными.

Человечество боится симуляции реальности, иначе все эти фильмы и книги вряд ли были бы такими пессимистичными. Так что спасибо Рингелю и Коврижину за прививку оптимизма для всего человечества. Конечно, если их исследование — это не отвлекающий манёвр матрицы.

Тема дебатов: «Является ли Вселенная компьютерной симуляцией». Шесть ученых: физики-теоретики и философ рассуждают об оправданности идеи симуляции реальности. Слова Рене Декарта: «Откуда вы можете знать, что вас не дурачит некий злой гений, создавая ваше представление о мире, окружающем нас?» служат своеобразным эпиграфом диспута. В центре внимания тезис – хватит ли современной научной базы данных для полноценного аргументирования всех за и против.

Состав участников симпозиума

Приглашенные участники форума почти синхронно пришли к некоторым выводам по вопросу о симуляции вселенской реальности.

На конференцию пришли коллеги и друзья ее организатора и модератора Нила Деграсс Тайсона, чтобы размышлять, высказывать свои мнения и даже спорить:

  • директор центра разума мозга и сознания, профессор нью-йоркского университета Дэвид Чалмерс;
  • ядерный физик, научный сотрудник Массачусетского технологического института Зоре Давуди;
  • профессор физики из университета Мэриленда Джеймс Сильвестр Гейтс;
  • профессор физики Гарварда Лиза Рендалл;
  • астрофизик из Массачусетского технологического института Макс Тэгмарк.

Взгляды и суждения ученых оказались интересны большому числу неравнодушных к смелым научным воззрениям, в корне, меняющем веками сложившееся мировоззрение. Билеты на конференцию, выставленные на реализацию в Сети, были проданы за три минуты!

Как участники окунулись в заявленную проблему

Первой взяла слово Зоре Давуди. Тема симуляции Вселенной возникла в процессе исследований схемы взаимодействия частиц. Итоги ее работы привели к размышлениям, почему законы, открытые исследователями не могут быть применены ко всей Вселенной. Сравнительный анализ компьютерных программ привел к формулированию гипотезы: Вселенная сама по себе может быть симуляцией. Ученым это показалось забавным, и они провели ряд изысканий в этом направлении.

Макс Тегмарк, признавший себя «облаком кварков», озвучил тезис о подчинении законам математики динамике и взаимосвязей частиц. Если бы он был персонажем компьютерной игры, задавшим себе вопрос о сути этой игры, то мог бы заметить математически выверенную программу. Спроецировав модель компьютерной игры на представления о Вселенной можно увидеть аналогии, а, следовательно, выходит, что там и там игра и симуляция. К таким выводам его подтолкнули фантазии Айзека Азимова.

Джеймс Гейтс, в своих исследованиях заметил при решении уравнений, связанных с электронами, кварками и суперсимметрии моменты, связывающие модели микро- и макромиров. На этом основании он выражает согласие с предыдущими выступающими. Джеймс особо подчеркнул важность трудов Айзека Азимова на формирование его выводов.

Вселенная паровая машина

Наверное, будет наивным проецирование результатов компьютерных исследований на всю Вселенную. Скорее всего, в какой–то очень небольшой степени аналогия верна, но компьютеры то тут причём? Так же, полтора столетия назад многомудрые ученые, которых тогда уже было немало, вдруг объявили Вселенную огромной паровой машиной. Ведь физические процессы, происходящие в агрегате, бессмысленно проецировать и на более масштабные конструкции, для получения шокирующих выводов.

Лиза Рендалл, задалась вопросом: зачем нам это надо? Если Вселенная – это компьютерная симуляция, то почему мир, данный человеку в ощущениях, никуда не исчез? Кто создал эту симуляцию, и какую роль играет человек в такой системе?

Философ Дэвид Чалмерс отметил фундаментальность вопроса, порассуждал о роли фантаста Айзека Азимова в возникновении у профессионального научного сообщества подобных вопросов. Он прочел не только всю художественную фантастику, но многие фундаментальные труды об истории и научных фактах. На этом основании Дэвид начал размышлять о соотношении сознания и разума, к которому он подходил как философ. Ведь философия позволяет отодвинуться и взглянуть на вещи со стороны. Вопрос о симуляции перекликается с проблемой, озвученной Декартом в эпиграфе.

По аналогии сформулируем сегодняшнюю проблему: «откуда тебе знать, что ты не живешь в симуляции вроде матрицы?» И если да, то получается, что ничего из этого якобы не существует. Вопрос интересен потому, что ничего из того, что мы можем знать, эту симуляцию не может исключить. Но если мы живем в симуляции, то она реальна, ведь в ней содержится вся информация, и в этом нет ничего плохого.

Виртуальные эксперименты – путь границам измеримого

Зоре Давуди. Гипотетические эксперименты были основаны на уже имеющейся научной базе позволили предположить возможность конструирования виртуальной модели, от простой компьютерной симуляции к вселенской. То есть виртуальные экспериментаторы строили Вселенную с самого основания.

Однако на определенном этапе процесс исследования натыкается на ограниченность нужных научных знаний, с другой стороны множество информационных точек, из которых можно выстроить теорию невозможно вводить для расчетов в современные компьютерные системы, чисто технически. Не существует одного пути изучения процесса для получения правильного результата.

Нил Тайсон вывел: мы не можем этого сделать, потому что мы ограничены, а, следовательно, и сама Вселенная ограничена.

Зоре Давуди – в этом то и суть! Если мы основываемся на предположении, что симуляция лежит в основе Вселенной, то симулятор Вселенной – это конечный компьютерный ресурс, то он, как и мы симулирует Вселенную в ограниченных условиях. Поэтому используется метод наложения моделей ограниченных симуляций на бесконечную Вселенную при совмещении с другими расчетами, явлениями и, к примеру, космическими лучами, составляют путь к границам измеряемого.

Аргументы «за» и «против»

Макс Тегмак. Фантастическая идея, что мы живем в мире симуляции, впервые озвучена философом Ником Бостромом. Он отметил, что физические законы позволят нам делать мощные компьютеры гигантских размеров, которые могут симулировать разум. Если мы не уничтожим себя и Землю, то в будущем, большая часть мышления и вычислений будет осуществляться подобными компьютерами, и, следовательно, если действия разума будут симулированы, то мы вероятно тоже симулированы. Это аргумент «за».

Уточнение ведущего: если симулирование вселенной станет развлечением для тех, кто получит доступ к грандиозному компьютеру, то мы живем в симулированных вселенных, даже если одна из них и реальна.

Контраргументом может быть размышление о симулированной Вселенной. Если предположить, что мы живем в симулированной Вселенной, изучаем законы физики «симулированного мира», и обнаруживаем, что в нем мы можем создавать гигантские суперкомпьютеры и всякие симулированные разумы. То есть выходит мы создали симуляцию, внутри симуляции. Потом, во внутренней симуляции могут тоже появиться суперкомпьютеры и новые симуляции, что-то вроде матрешки.

Оба аргумента ущербны потому, что мы не знаем истинных законов физики исходной вселенной, здесь есть философский подвох.

Несовершенство науки и образа мыслей человека

Как мы при помощи научных методов можем протестировать идею, живем мы в симуляции или нет. Одним из лучших способов – это поиск свидетелей существования программиста. Помимо этого нам стоит смотреть на непонятные вещи. Невозможно придумать более непонятного, чем сознание, можно ли его хоть как-то описать математически, если это невозможно сделать, то гипотеза симуляции Вселенной будет неактуальна.

Но в некотором смысле даже математика несовершенна, она не всегда доказуема. Нет доказательств некоторым теоремам. Возможно, то чем идет разговор не всегда требует математического обоснования. Но может быть, живя и информационном поле, мы искусственно навязываем себе проблему, которая никак не связана с реальностью, либо есть более качественная гипотеза, которая найдется на следующем этапе развития человечества. Следовательно, находясь на определенном уровне развития, ученые дают объяснения процессов не более чем могут. Заглядывая за грань познаваемого, мы получаем проблему, у которой на данный момент нет, и не может быть разрешения.

Наивные потуги «объять необъятное»

Если нам не нужна гипотеза, что мы живем в мире симуляции, нам стоит просто обойтись без нее, сказал философ Дэвид Чалмерс, может наука нам и представит уравнения и вычисления, совмещаемых с гипотезой про симуляцию, но гораздо проще, если это не так. Но похожа ли Вселенная на шахматную доску, где всех ходы записаны? Скорее всего, никто не знает верного ответа. Но есть много других игр, а здесь перед нами одна Вселенная, где мы можем проверять свои предположения.

Многие люди думают, что все вокруг существует ради них. Однако, скорее всего это не так, мы мучаемся в поисках правильного понимания окружающего мира и в частности Вселенной, а она по-большому счету равнодушна ко всем нашим потугам. Вселенная является удивительной тайной, а человеку нужно быт поскромнее в попытках «объять необъятное». Мир был бы лучше, если бы люди были немного скромнее. Поэтому истинной задачей физики является поиск скрытой простоты вещей.

Физика не теряет свою актуальность

Цель физики, смотря на сложную и беспорядочную Вселенную искать в ней скрытые шахматные правила, которые на самом деле просты. Сначала нужно представить, что это возможно, а потом, напрягая все до края силы выяснять истину. Однако даже если мы докопаемся до того, что не живём в симуляции и начнём исследовать «настоящую реальность», где гарантии, что эта «настоящая реальность» не симуляция?

По сути, реальна ли Вселенная, или симулирована не важно, ибо каждый день мы переживаем, а как? Реально, или воображаемо не очень существенно. На данный момент у нас нет научных законов, при помощи которых можно доказать тезис о симуляции, как нет и достаточных оснований, чтобы полностью его опровергнуть.

В будущем, возможно, такие аргументы найдутся. Следит ли некий «Программист» за нашим существованием или нет? Доказательно утверждать нельзя. Самое легкое – это представить все в нашей жизни творением неких высших существ.

Гипотеза о компьютерной симуляции нашей вселенной была выдвинута в 2003 году британским философом Ником Бостромом, но уже получила своих последователей в лице Нила Деграсс Тайсона и Илона Маска, которые высказались, что вероятность гипотезы равна почти 100%. В её основе лежит идея о том, что всё существующее в нашей вселенной является продуктом симуляции, наподобие экспериментов, проводимых машинами из трилогии «Матрица».

Теория симуляции

Теория полагает, что при наличии достаточного числа компьютеров, обладающих большой вычислительной мощностью, становится возможным симулировать детально весь мир, который будет настолько правдоподобным, что его обитатели будут обладать сознанием и интеллектом.

Опираясь на эти идеи, можно предположить: а что мешает нам уже жить в компьютерной симуляции? Может быть, более развитая цивилизация проводит подобный эксперимент, получив необходимые технологии, и весь наш мир является симуляцией?

Многие физики и метафизики уже создали убедительные аргументы в пользу идеи, ссылающиеся на различные математические и логические аномалии. Основываясь на этих аргументах, можно предположить существование космической компьютерной модели.

Математическое опровержение идеи

Однако, двое физиков из Оксфорда и Еврейского университета в Иерусалиме, Зохар Рингель и Дмитрий Коврижин, доказали невозможность существования подобной теории. Свои находки они опубликовали в журнале Science Advances.

Проведя моделирование квантовой системы, Рингель и Коврижин выяснили, что для симуляции всего нескольких квантовых частиц потребуются огромные вычислительные ресурсы, которые из-за природы квантовой физики будут возрастать экспоненциально с увеличением количества симулируемых квантов.

Для хранения матрицы, описывающей поведение 20 спинов квантовых частиц, потребуется терабайт ОЗУ. Экстраполировав эти данные всего на несколько сотен спинов, мы получим, что для создания компьютера с таким объёмом памяти потребуется больше атомов, чем их общее число во вселенной.

Другими словами, учитывая сложность квантового мира, который мы наблюдаем, можно доказать, что любая предложенная компьютерная симуляция вселенной потерпит неудачу.

А, может, всё-таки симуляция?

С другой стороны, продолжая философские рассуждения, человек быстро придёт к вопросу: «Возможно ли, что более развитые цивилизации специально вложили в симулятор эту сложность квантового мира, чтобы сбить нас с пути?» На это Дмитрий Коврижин отвечает:

Это интересный философский вопрос. Но он вне поля действия физики, поэтому я предпочёл бы его не комментировать.