Чем отличаются ионы от частиц. Общая и неорганическая химия

Впервые термин "ион" был введен в 1834 году, в чем заслуга Майкла Фарадея. После изучения действия электрического тока на растворы солей, щелочей и кислот он пришел к выводу, что в них содержатся частицы, имеющие некий заряд. Катионами Фарадей назвал ионы, которые в электрическом поле двигались к катоду, имеющему отрицательный заряд. Анионы - отрицательно заряженные неэлементарные ионные частицы, которые в электрическом поле движутся к плюсу - аноду.

Данная терминология применяется и сейчас, а частицы изучаются далее, что позволяет рассматривать химическую реакцию как результат электростатического взаимодействия. Многие реакции протекают по этому принципу, что позволило понять их ход и подобрать катализаторы и ингибиторы для ускорения их протекания и для угнетения синтеза. Также стало известно, что многие вещества, особенно в растворах, всегда находятся в виде ионов.

Номенклатура и классификация ионов

Ионы - это заряженные атомы или группа атомов, которая в ходе химической реакции потеряла или приобрела электроны. Они составляют внешние слои атома и могут теряться из-за низкой силы притяжения ядра. Тогда результатом отсоединения электрона является положительный ион. Также если атом имеет сильный ядерный заряд и узкую электронную оболочку, ядро является акцептором дополнительных электронов. В результате этого образуется отрицательная ионная частица.

Сами ионы - это не только атомы с избыточной или недостаточной электронной оболочкой. Это может быть и группа атомов. В природе чаще всего существуют именно групповые ионы, которые присутствуют в растворах, биологических жидкостях тел организмов и в морской воде. Имеется огромное количество видов ионов, названия которых вполне традиционны. Катионы - это ионные частицы, заряженные положительно, а заряженные отрицательно ионы - это анионы. В зависимости от состава их называют по-разному. Например, катион натрия, катион цезия и другие. Анионы называются по-другому, так как чаще всего состоят из многих атомов: сульфат-анион, ортофосфат-анион и другие.

Механизм образования ионов

Химические элементы в составе соединений редко являются электрически нейтральными. То есть они почти никогда не находятся в состоянии атомов. В образовании ковалентной связи, которая считается самой распространенной, атомы также имеют некий заряд, а электронная плотность смещается вдоль связей внутри молекулы. Однако заряд иона здесь не формируется, потому как энергия ковалентной связи меньше, нежели энергия ионизации. Потому, несмотря на различную электроотрицательность, одни атомы не могут полностью притянуть электроны внешнего слоя других.

В ионных реакциях, где разница электроотрицательности между атомами достаточно большая, один атом может забирать электроны внешнего слоя у другого атома. Тогда созданная связь сильно поляризуется и разрывается. Затраченная на это энергия, которая создает заряд иона, называется энергией ионизации. Для каждого атома она различная и указывается в стандартных таблицах.

Ионизация возможна только в том случае, когда атом или группа атомов способен либо отдавать электроны, либо акцептировать их. Чаще всего это наблюдается в растворе и кристаллах солей. В кристаллической решетке также присутствуют почти неподвижные заряженные частицы, лишенные кинетической энергии. А поскольку в кристалле нет возможности для передвижения, то реакция ионов протекают чаще всего в растворах.

Ионы в физике и химии

Физики и химики активно изучают ионы по нескольким причинам. Во-первых, эти частицы присутствуют во всех известных агрегатных состояниях вещества. Во-вторых, энергию отрыва электронов от атома можно измерить, чтобы использовать это в практической деятельности. В-третьих, в кристаллах и растворах ионы ведут себя по-разному. И, в-четвертых, ионы позволяют проводить электрический ток, а физико-химические свойства растворов меняются в зависимости от концентраций ионов.

Ионные реакции в растворе

Сами растворы и кристаллы следует рассмотреть детальнее. В кристаллах солей существуют отдельно расположенные положительные ионы, к примеру, катионы натрия и отрицательные, анионы хлора. Структура кристалла удивительна: за счет сил электростатического притяжения и отталкивания ионы ориентируются особым образом. В случае с хлоридом натрия они образуют так называемую алмазную кристаллическую решетку. Здесь каждый натриевый катион окружен 6 хлоридными анионами. В свою очередь, каждый хлоридный анион окружает 6 анионов хлора. Из-за этого простая поваренная соль и в холодной и горячей воде растворяется почти с одинаковой скоростью.

В растворе тоже не существует цельной молекулы хлорида натрия. Каждый из ионов здесь окружается диполями воды и хаотично передвигается в ее толще. Наличие зарядов и электростатических взаимодействий приводит к тому, что солевые растворы воды замерзают при температуре чуть меньше нуля, а кипят при температуре выше 100 градусов. Более того, если в растворе присутствуют другие вещества, способные вступить в химическую связь, то реакция протекает не с участием молекул, а ионов. Это создало учение о стадийности химической реакции.

Те продукты, которые получаются в конце, не образуются сразу в ходе взаимодействия, а постепенно синтезируются из промежуточных продуктов. Изучение ионов позволило понять, что реакция протекает как раз по принципам электростатических взаимодействий. Их результатом является синтез ионов, которые электростатически взаимодействуют с другими ионами, создавая конечный равновесный продукт реакции.

Резюме

Такая частица, как ион, это электрически заряженный атом или группа атомов, которая получается в ходе потери или приобретения электронов. Самым простым ионом является водородный: если он теряет один электрон, то представляет собой лишь ядро с зарядом +1. Он обуславливает кислую среду растворов и сред, что важно для функционирования биологических систем и организмов.

Ионы могут иметь как положительные, так и отрицательные заряды. За счет этого в растворах каждая частица вступает в электростатическое взаимодействие с диполями воды, что также создает условия для жизни и передачи сигналов клетками. Более того, в ионные технологии развиваются дальше. К примеру, созданы ионные двигатели, которыми оснащалось уже 7 космических миссий NASA.

Ион - одноатомная или многоатомная электрически заряженная частица вещества, образующаяся в результате потери или присоединения атомом в составе молекулы одного или нескольких электронов.

Заряд иона кратен заряду электрона. Понятие и термин «ион» ввел в 1834 году Майкл Фарадей, который, изучая действие электрического тока на водные растворы кислот, щелочей и солей, предположил, что электропроводность таких растворов обусловлена движением ионов. Положительно заряженные ионы, движущиеся в растворе к отрицательному полюсу (катоду), Фарадей назвал катионами , а отрицательно заряженные, движущиеся к положительному полюсу (аноду) - анионами .

Свойства ионов определяются:

1) знаком и величиной их заряда;
2) строением ионов, т. е. расположением электронов и прочностью их связей, причем особенно важны внешние электроны;
3) их размерами, определяемыми радиусом орбиты внешнего электрона.
4) прочностью электронной оболочки (деформируемостью ионов).

В виде самостоятельных частиц ионы встречаются во всех агрегатных состояниях вещества: в газах (в частности, в атмосфере), в жидкостях (в расплавах и растворах), в кристаллах и в плазме (в частности, в межзвездном пространстве).

Являясь химически активными частицами, ионы вступают в реакции с атомами, молекулами и между собой. В растворах ионы образуются в результате электролитической диссоциации и обусловливают свойства электролитов.

Число элементарных электрических зарядов у ионов в растворах почти всегда совпадает с валентностью данного атома или группы; газовые ионы могут иметь и другое число элементарных зарядов. Под влиянием достаточно энергичных воздействий (высокая температура, излучение высокой частоты, электроны большой скорости) могут образоваться положительные ионы с различным числом электронов, вплоть до голых ядер. Положительные ионы обозначаются знаком + (плюс) или точкой (например, Mg***,Аl +++), отрицательные знаком — (минус) или знаком" (Сl - , Br").Число знаков обозначает число избыточных элементарных зарядов. Чаще всего образуются ионы с устойчивыми внешними электронными оболочками, соответствующими оболочке благородных газов. Ионы, из которых построены кристаллы, и ионы, встречающиеся в растворах и растворителях с высокими диэлектрическими постоянными, принадлежат большей частью к этому типу, например щелочные и щелочноземельные металлы, галоиды и т. д. Впрочем встречаются и т. н. переходные ионы, у которых внешние оболочки содержат от 9 до 17 электронов; эти ионы могут переходить сравнительно легко в ионы другого типа и значности (например Fe - - , Си" и т.д.).

Химические и физические свойства

Химические и физические свойства ионов резко отличаются от свойств нейтральных атомов, напоминая во многих отношениях свойства атомов других элементов, имеющих тоже число электронов и ту же внешнюю электронную оболочку (напр. К" напоминает Ar, F"—Ne). Простые ионы, как показывает волновая механика, имеют сферическую форму. Размеры ионы характеризуются величиной их радиусов, которые могут быть определены эмпирически по данным рентгеновского анализа кристаллов (Гольдшмидт) или вычислены теоретически методами волновой механики (Паулииг) или статистики (Ферми). Результаты, полученные обоими методами, дают вполне удовлетворительное совпадение. Целый ряд свойств кристаллов и растворов определяется радиусами ионов, из которых они состоят; у кристаллов этими свойствами являются энергия кристаллической решетки и в значительной степени ее тип; в растворах ионов поляризуют и притягивают молекулы растворителя, образуя оболочки переменного состава, эта поляризация и прочность связи между ионов и молекулами растворителя определяются почти исключительно радиусами и зарядами ионов. Насколько вообще сильно действие поля ионов на молекулы растворителя, показывают вычисления Цвикки, который нашел, что молекулы воды находятся вблизи ионов под давлением порядка 50.000 атм. Прочность(деформируемость) внешней электронной оболочки зависит от степени связанности внешних электронов и обусловливает главным образом оптические свойства ионов (цветность, рефракция). Впрочем цветность ионов связана также и с образованием ионов различных соединений с молекулами растворителя. Теоретические вычисления эффектов, связанных с деформацией электронных оболочек, более затруднительны и менее наделены, чем вычисления сил взаимодействия между ионами. Причины образования ионов в растворах точно неизвестны; наиболее правдоподобно мнение, что молекулы растворимых веществ разрываются на ионы молекулярным нолем растворителя; гетерополярные, т. е. построенные из ионов кристаллы дают повидимому при растворении сразу ионы. Значение молекулярного поля растворителя подтверждается как будто параллелизмом между величиной диэлектрической постоянной растворителя, являющейся приблизительным мерилом напряжения его молекулярного поля, и степенью диссоциации (правило Нернста-Томсона, экспериментально подтвержденное Вальденом). Однако ионизация происходит и в веществах с малыми диэлектрическими постоянными, но здесь растворяются преимущественно электролиты, дающие комплексные ионны. Комплексы образуются иногда из ионов растворяющегося вещества, иногда растворитель также принимает участие в их образовании. Для веществ с малыми диэлектрическими постоянными характерно также образование комплексных ионов при прибавлении не электролитов, например (С 2 Н 5)0Вг 3 дает при смешении с хлороформом проводящую
систему. Внешним признаком образования комплексных ионов служит т. н. аномальная электропроводность, при которой график, изображающий зависимость молярной электропроводности от разведения, дает максимум в области концентрированных растворов и минимум—при дальнейшем разведении.

Номенклатура Согласно химической номенклатуре, название катиона, состоящего из одного атома совпадает с названием элемента, например, Na + называется натрий-ионом, иногда добавляют в скобках заряд, например, название катиона Fe 2+ - железо(II)-ион. Название состоит из одного атома аниона образуется из корня латинского названия элемента и суффикса «-ид/-ид », например, F - называется фторид-ионом.

Ион представляет собой электрически заряженную частицу. При этом ион может иметь как положительный электрический заряд , так и отрицательный. В первом случае его называют катионом , а во втором – анионом .

Ионом может быть атом, молекула или свободный радикал, если, конечно же, они имеют какой-либо заряд. Кстати заряд иона не может быть бесконечно мал, а частица, которой он представлен – элементарной.

Ионы также являются химически активными частицами, так что могут вступать в реакцию как с другими частицами (не заряженными), так и между собой.

Ионы, как самостоятельные частицы, встречаются практически везде. Они есть в атмосфере, в различных жидкостях, в твердых веществах и даже в межзвездном пространстве, где воздуха или какого-то вещества в принципе крайне мало.

История

Впервые понятие «ион» ввел известный ученый Майкл Фарадей в 1834 году. Изучая распространение электричества в различных средах, он предположил, что электрическая проводимость некоторых из них может быть вызвана наличием в этих средах и веществах неких электрически заряженных частиц. Вот он и назвал их ионами. Ученый также ввел понятия катионов и анионов. Так как положительные ионы движутся к отрицательно заряженному электроду – катоду, он назвал их катионами. Отрицательные же ионы двигаются наоборот – к аноду, значит они должны называться анионами.

ИОНЫ ИОНЫ, электрически заряженные частицы, образующиеся из атома (молекулы) в результате потери или присоединения одного или нескольких электронов. Положительно заряженные ионы называются катионами, отрицательно заряженные ионы - анионами.

Современная энциклопедия . 2000 .

Смотреть что такое "ИОНЫ" в других словарях:

    ИОНЫ - (от греч. ion идущий,странствующий), атомы или хим. радикалы, несущие электрические заряды. И с т о р и я. Как установил впервые Фарадей (Faraday), проведение электрического тока в растворах связано с передвижением материальных частиц, несущих… … Большая медицинская энциклопедия

    ионы - – электрически заряженные атомы или молекулы. Общая химия: учебник / А. В. Жолнин Ионы – электрически заряженные частицы, возникающие при потере или присоединении электронов атомами, молекулами и радикалами. Словарь по аналитической химии… … Химические термины

    Продукты разложения какого либо тела при посредстве электролиза. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910 … Словарь иностранных слов русского языка

    - (от греч. iōn идущий), заряженные частицы, образующиеся из атома (молекулы) в результате потери или присоединения одного или нескольких электронов. В растворах положительно заряженные ионы называются катионами, отрицательно заряженные ионы … … Энциклопедический словарь

    Ион (греч. ιόν «идущий») электрически заряженная частица (атом, молекула), образующаяся, обычно, в результате потери или присоединения одного или нескольких электронов атомами или молекулами. Заряд иона кратен заряду электрона. Понятие и… … Википедия

    Ионы - (от греческого ion идущий) электрически заряженные частицы, образующиеся при потере или присоединении электронов (или других заряженных частиц) атомами или группами атомов (молекулы, радикалы и др.). Понятие и термин ионы ввел в 1834 г.… … Энциклопедический словарь по металлургии

    - (от греч. идущий), одноатомные или многоатомные частицы, несущие электрич. заряд, напр. Н +, Li+, Аl3+, NH4+, F , SO42 . Положительные И. называют катионами (от греч. kation, буквально идущий вниз), отрицательные а н и о н а м и (от греч. anion,… … Химическая энциклопедия

    - (от греч. ión идущий) электрически заряженные частицы, образующиеся при потере или присоединении электронов (или других заряженных частиц) атомами или группами атомов. Такими группами атомов могут быть молекулы, радикалы или другие И.… … Большая советская энциклопедия

    ионы - физ. частицы, несущие положительный или отрицательный заряд. Положительно заряженные ионы несут меньше электронов, чем положено, а отрицательные больше … Универсальный дополнительный практический толковый словарь И. Мостицкого

    - (физ.) По терминологии, введенной в учение об электричестве знаменитым Фарадеем, тело, подвергающееся разложению действием на него гальванического тока, называется электролитом, разложение таким путем электролизом, а продукты разложения ионами.… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Книги

  • Ионы водорода лечат рак. Луч надежды , Гарбузов Геннадий Алексеевич. Геннадий Алексеевич Гарбузов - известный ученый из Сочи, биолог, давний последователь академика Болотова, специалист в области нетрадиционного лечения онкологических заболеваний. Многолетние…
  • Ионы водорода лечат рак Луч надежды , Гарбузов Г.. Геннадий Алексеевич Гарбузов - известный ученый из Сочи, биолог, давний последователь академика Болотова, специалист в области нетрадиционного лечения онкологических заболеваний. .…
ИОНЫ (от греч. - идущий), одноатомные или многоатомные частицы, несущие электрич. заряд, напр. Н + , Li + , Аl 3+ , NH 4 + , F - , SO 4 2 - . Положительные ионы называют катионами (от греч. kation, буквально - идущий вниз), отрицательные - а н и о н а м и (от греч. anion, буквально идущий вверх). В своб. состоянии существуют в газовой фазе (в плазме). Положительные ионы в газовой фазе можно получить в результате отрыва одного или неск. электронов от нейтральных частиц при сильном нагреве газа , действии электрич. разряда, ионизирующих излучений и др. Поглощаемую при образовании однозарядного положит. иона энергию называют первым потенциалом ионизации (или первой энергией ионизации), для получения двухзарядного иона из однозарядного затрачивается вторая энергия ионизации и т. д. Отрицат. ионы образуются в газовой фазе при присоединении к частицам своб. электронов , причем нейтральные атомы могут присоединять не более одного электрона ; отрицат. многозарядные одноатомные ионы в индивидуальном состоянии не существуют. Выделяющаяся при присоединении электрона к нейтральной частице энергия наз. сродством к электрону . В газовой фазе ионы могут присоединять нейтральные молекулы и образовывать ионмолекулярные комплексы. См. также Ионы в газах . В конденсир. фазах ионы находятся в ионных кристаллич. решетках и ионных расплавах ; в р-рах электролитов имеются сольватир. ионы, образовавшиеся в результате электролитич. диссоциации растворенного в-ва. В конденсир. фазе ионы интенсивно взаимодействуют (связаны) с окружающими их частицами - ионами противоположного знака в кристаллах и в расплавах , с нейтральными молекулами - в р-рах. Взаимод. происходит по кулоновскому, ион-дипольному, донорно-акцепторному механизмам. В р-рах вокруг ионов образуются сольватные оболочки из связанных с ионами молекул р-рителя (см. Гидратация , Сольватация). Представление об ионах в кристаллах - удобная идеализир. модель, т.к. чисто ионной связи никогда не бывает, напр., в кристаллич. NaCl эффективные заряды атомов Na и Сl равны соотв. приблизительно +0,9 и -0,9. Св-ва ионов в конденсир. фазе значительно отличаются от св-в тех же ионов в газовой фазе. В р-рах существуют отрицательные двухзарядные одноатомные ионы . В конденсир. фазе имеется множество разл. многоатомных ионов - анионы кислородсодержащих к-т, напр. NO 3 - , SO 4 2 - , комплексные ионы, напр. 3+ , 2 - , кластерные ионы 2+ и др. (см. Кластеры), ионы полиэлектролитов и др. В р-ре ионы могут образовывать ионные пары . Термодинамич. характеристики - D H 0 обр, S 0 , D G 0 обр индивидуальных ионов известны точно только для ионов в газовой фазе. Для ионов в р-рах при эксперим. определении всегда получают сумму значений термодинамич. характеристик для катиона и аниона . Возможен теоретич. расчет термодинамич. величин индивидуальных ионов, но его точность пока меньше точности эксперим. определения суммарных значений, поэтому для практич. целей пользуются условными шкалами термодинамич. характеристик индивидуальных ионов в р-ре, причем обычно принимают величины термодинамич. характеристик Н + равными нулю. Осн. структурные характеристики ионов в конденсир. фазе -радиус и координац. число. Было предложено много разл. шкал радиусов одноатомных ионов. Часто используются т. наз. физ. радиусы ионов, найденные К. Шенноном (1969) по эксперим. данным о точках минимума электронной плотности в кристаллах . Координац. числа одноатомных ионов в осн. лежат в пределах 4-8. И оны участвуют во множестве разнообразных р-ций. Часто бывают катализаторами , промежут. частицами в хим. р-циях, напр., при гетеролитических реакциях . Обменные ионные р-ции в р-рах электролитов обычно протекают практически мгновенно. В электрич. поле ионы переносят электричество: катионы - к отрицат. электроду (катоду), анионы - к положительному (аноду); одновременно происходит перенос в-ва, к-рый играет важную роль в