Формула проекции перемещения при равномерном движении. О выводе формулы перемещения при равноускоренном движении

Прямолинейное равномерное движение - это такое движение, при котором за одинаковые промежутки времени, тело проходит одинаковое расстояние.

Равномерное движение - это такое движение тела, при котором его скорость остается постоянной (),то есть все время движется с одной скоростью, а ускорение или замедление не происходит ().

Прямолинейное движение - это движение тела по прямой линии, то есть траектория у нас получается - прямая.

Скорость равномерного прямолинейного движения не зависит от времени и в каждой точке траектории направлена также, как и перемещение тела. То есть вектор скорости совпадает с вектором перемещения. При всем этом средняя скорость в любой промежуток времени равна начальной и мгновенной скорости:

Скорость равномерного прямолинейного движения - это физическая векторная величина, равная отношению перемещения тела за любой промежуток времен к значению этого промежутка t:

Из данной формулы. мы легко можем выразить перемещение тела при равномерном движении:

Рассмотрим зависимость скорости и перемещения от времени

Так как тело у нас движется прямолинейно и равноускоренно (), то график с зависимостью скорости от времени будет выгладить, как параллельная прямая оси времени.

В зависимости проекции скорости тела от времени ничего сложного нет. Проекция перемещения тела численно равна площади прямоугольника АОВС, так как величина вектора перемещения равна произведению вектора скорости на время, за которое было совершено перемещение.

На графике мы видим зависимость перемещения от времени .

Из графика видно, что проекция скорости равна:

Рассмотрев эту формулу. мы можем сказать, чем больше угол, тем быстрей движется наше тело и оно проходит больший путь за меньшее время

Равноускоренным движением называют такое движение, при котором вектор ускорения остается неизменным по модулю и направлению. Примером такого движения является движение камня, брошенного под некоторым углом к горизонту (без учета сопротивления воздуха). В любой точке траектории ускорение камня равно ускорению свободного падения . Таким образом, изучение равноускоренного движения сводится к изучению прямолинейного равноускоренного движения. В случае прямолинейного движения векторы скорости и ускорения направлены вдоль прямой движения. Поэтому скорость и ускорение в проекциях на направление движения можно рассматривать как алгебраические величины. При равноускоренном прямолинейном движении скорость тела определяется формулой (1)

В этой формуле – скорость тела при t = 0 (начальная скорость ), = const – ускорение. В проекции на выбранную ось х уравнение (1) запишется в виде: (2). На графике проекции скорости υ х (t ) эта зависимость имеет вид прямой линии.

По наклону графика скорости может быть определено ускорение a тела. Соответствующие построения выполнены на рис. для графика I Ускорение численно равно отношению сторон треугольника ABC : .

Чем больше угол β, который образует график скорости с осью времени, т. е. чем больше наклон графика (крутизна ), тем больше ускорение тела.

Для графика I: υ 0 = –2 м/с, a = 1/2 м/с 2 . Для графика II: υ 0 = 3 м/с, a = –1/3 м/с 2 .

График скорости позволяет также определить проекцию перемещения s тела за некоторое время t. Выделим на оси времени некоторый малый промежуток времени Δt. Если этот промежуток времени достаточно мал, то и изменение скорости за этот промежуток невелико, то есть движение в течение этого промежутка времени можно считать равномерным с некоторой средней скоростью, которая равна мгновенной скорости υ тела в середине промежутка Δt. Следовательно, перемещение Δs за время Δt будет равно Δs = υΔt. Это перемещение равно площади заштрихованной на рис. полоски. Разбив промежуток времени от 0 до некоторого момента t на малые промежутки Δt, можно получить, что перемещение s за заданное время t при равноускоренном прямолинейном движении равно площади трапеции ODEF. Соответствующие построения выполнены на рис. для графика II. Время t принято равным 5,5 с.

(3) – полученная формула позволяет определить перемещение при равноускоренном движении если ускорение не известно.

Если подставить в уравнение (3) выражение для скорости (2), то получаем (4) – эта формула используется для записи уравнения движения тела: (5).

Если выразить из уравнения (2) время движения (6) и подставить в равенство (3), то

Эта формула позволяет определить перемещение при неизвестном времени движения.

Страница 8 из 12

§ 7. Перемещение при равноускоренном
прямолинейном движении

1. Используя график зависимости скорости от времени, можно получить формулу перемещения тела при равномерном прямолинейном движении.

На рисунке 30 приведен график зависимости проекции скорости равномерного движения на ось X от времени. Если восставить перпендикуляр к оси времени в некоторой точке C , то получим прямоугольник OABC . Площадь этого прямоугольника равна произведению сторон OA и OC . Но длина стороны OA равна v x , а длина стороны OC - t , отсюда S = v x t . Произведение проекции скорости на ось X и времени равно проекции перемещения, т. е. s x = v x t .

Таким образом, проекция перемещения при равномерном прямолинейном движении численно равна площади прямоугольника, ограниченного осями координат, графиком скорости и перпендикуляром, восставленным к оси времени.

2. Получим аналогичным образом формулу проекции перемещения при прямолинейном равноускоренном движении. Для этого воспользуемся графиком зависимости проекции скорости на ось X от времени (рис. 31). Выделим на графике малый участок ab и опустим перпендикуляры из точек a и b на ось времени. Если промежуток времени Dt , соответствующий участку cd на оси времени, мал, то можно считать, что скорость в течение этого промежутка времени не изменяется и тело движется равномерно. В этом случае фигура cabd мало отличается от прямоугольника и ее площадь численно равна проекции перемещения тела за время, соответствующее отрезку cd .

На такие полоски можно разбить всю фигуру OABC , и ее площадь будет равна сумме площадей всех полосок. Следовательно, проекция перемещения тела за время t численно равна площади трапеции OABC . Из курса геометрии вы знаете, что площадь трапеции равна произведению полусуммы ее оснований и высоты:S = (OA + BC )OC .

Как видно из рисунка 31, OA = v 0x , BC = v x , OC = t . Отсюда следует, что проекция перемещения выражается формулой: s x = (v x + v 0x )t .

При равноускоренном прямолинейном движении скорость тела в любой момент времени равна v x = v 0x + a x t , следовательно,s x = (2v 0x + a x t )t .

Отсюда:

Чтобы получить уравнение движения тела, подставим в формулу проекции перемещения ее выражение через разность координат s x = x x 0 .

Получим: x x 0 = v 0x t + , или

x = x 0 + v 0x t + .

По уравнению движения можно определить координату тела в любой момент времени, если известны начальная координата, начальная скорость и ускорение тела.

3. На практике часто встречаются задачи, в которых нужно найти перемещение тела при равноускоренном прямолинейном движении, но время движения при этом неизвестно. В этих случаях используют другую формулу проекции перемещения. Получим ее.

Из формулы проекции скорости равноускоренного прямолинейного движения v x = v 0x + a x t выразим время:

t = .

Подставив это выражение в формулу проекции перемещения, получим:

s x = v 0x + .

Отсюда:

s x = , или
–= 2a x s x .

Если начальная скорость тела равно нулю, то:

2a x s x .

4. Пример решения задачи

Лыжник съезжает со склона горы из состояния покоя с ускорением 0,5 м/с 2 за 20 с и дальше движется по горизонтальному участку, проехав до остановки 40 м. С каким ускорением двигался лыжник по горизонтальной поверхности? Какова длина склона горы?

Дано :

Решение

v 01 = 0

a 1 = 0,5 м/с 2

t 1 = 20 с

s 2 = 40 м

v 2 = 0

Движение лыжника состоит из двух этапов: на первом этапе, спускаясь со склона горы, лыжник движется с возрастающей по модулю скоростью; на втором этапе при движении по горизонтальной поверхности его скорость уменьшается. Величины, относящиеся к первому этапу движения, запишем с индексом 1, а ко второму этапус индексом 2.

a 2?

s 1?

Систему отсчета свяжем с Землей, ось X направим по направлению скорости лыжника на каждом этапе его движения (рис. 32).

Запишем уравнение для скорости лыжника в конце спуска с горы:

v 1 = v 01 + a 1 t 1 .

В проекциях на ось X получим: v 1x = a 1x t . Поскольку проекции скоростии ускорения на ось X положительны, модуль скорости лыжника равен: v 1 = a 1 t 1 .

Запишем уравнение, связывающее проекции скорости, ускорения и перемещения лыжника на втором этапе движения:

–= 2a 2x s 2x .

Учитывая, что начальная скорость лыжника на этом этапе движения равна его конечной скорости на первом этапе

v 02 = v 1 , v 2x = 0 получим

– = –2a 2 s 2 ; (a 1 t 1) 2 = 2a 2 s 2 .

Отсюда a 2 = ;

a 2 == 0,125 м/с 2 .

Модуль перемещения лыжника на первом этапе движения равен длине склона горы. Запишем уравнение для перемещения:

s 1x = v 01x t + .

Отсюда длина склона горы равна s 1 = ;

s 1 == 100 м.

Ответ: a 2 = 0,125 м/с 2 ; s 1 = 100 м.

Вопросы для самопроверки

1. Как по графику зависимости проекции скорости равномерного прямолинейного движения на ось X

2. Как по графику зависимости проекции скорости равноускоренного прямолинейного движения на ось X от времени определить проекцию перемещения тела?

3. По какой формуле рассчитывается проекция перемещения тела при равноускоренном прямолинейном движении?

4. По какой формуле рассчитывается проекция перемещения тела, движущегося равноускоренно и прямолинейно, если начальная скорость тела равна нулю?

Задание 7

1. Чему равен модуль перемещения автомобиля за 2 мин, если за это время его скорость изменилась от 0 до 72 км/ч? Какова координата автомобиля в момент времени t = 2 мин? Начальную координату считать равной нулю.

2. Поезд движется с начальной скоростью 36 км/ч и ускорением0,5 м/с 2 . Чему равны перемещение поезда за 20 с и его координата в момент времени t = 20 с, если начальная координата поезда 20 м?

3. Каково перемещение велосипедиста за 5 с после начала торможения, если его начальная скорость при торможении равна 10 м/с,а ускорение составляет 1,2 м/с 2 ? Чему равна координата велосипедиста в момент времени t = 5 с, если в начальный момент времени он находился в начале координат?

4. Автомобиль, движущийся со скоростью 54 км/ч, останавливается при торможении в течение 15 с. Чему равен модуль перемещения автомобиля при торможении?

5. Два автомобиля движутся навстречу друг другу из двух населенных пунктов, находящихся на расстоянии 2 км друг от друга. Начальная скорость одного автомобиля 10 м/с и ускорение 0,2 м/с 2 , начальная скорость другого - 15 м/с и ускорение 0,2 м/с 2 . Определите время и координату места встречи автомобилей.

Лабораторная работа № 1

Исследование равноускоренного
прямолинейного движения

Цель работы:

научиться измерять ускорение при равноускоренном прямолинейном движении; экспериментально установить отношение путей, проходимых телом при равноускоренном прямолинейном движении за последовательные равные промежутки времени.

Приборы и материалы:

желоб, штатив, металлический шарик, секундомер, измерительная лента, цилиндр металлический.

Порядок выполнения работы

1. Укрепите в лапке штатива один конец желоба так, чтобы он составлял небольшой угол с поверхностью стола.У другого конца желоба положите в него цилиндр металлический.

2. Измерьте пути, проходимые шариком за 3 последовательных промежутка времени, равных 1 с каждый. Это можно сделать по‑разному. Можно поставить мелом на желобе метки, фиксирующие положения шарика в моменты времени, равные 1 с, 2 с, 3 с, и измерить расстояния s_ между этими метками. Можно, отпуская каждый раз шарик с одной и той же высоты, измерить путь s , пройденный им сначала за 1 с, затем за 2 с и за 3 с, а затем рассчитать путь, пройденный шариком за вторую и третью секунды. Результаты измерений запишите в таблицу 1.

3. Найдите отношения пути, пройденного за вторую секунду, к пути, пройденному за первую секунду, и пути, пройденного за третью секунду, к пути, пройденному за первую секунду. Сделайте вывод.

4. Измерьте время движения шарика по желобу и пройденныйим путь. Вычислите ускорение его движения, используя формулуs = .

5. Используя экспериментально полученное значение ускорения, вычислите пути, которые должен пройти шарик за первую, вторую и третью секунды своего движения. Сделайте вывод.

Таблица 1

№ опыта

Экспериментальные данные

Теоретические результаты

Время t, с

Путь s, см

Время t, с

Путь

s, см

Ускорение a, см/с2

Время t , с

Путь s, см

1

1

1

Равномерное прямолинейное движение – это частный случай неравномерного движения.

Неравномерное движение – это движение, при котором тело (материальная точка) за равные промежутки времени совершает неодинаковые перемещения. Например, городской автобус движется неравномерно, так как его движение состоит в основном из разгонов и торможений.

Равнопеременное движение – это движение, при котором скорость тела (материальной точки) за любые равные промежутки времени изменяется одинаково.

Ускорение тела при равнопеременном движении остаётся постоянным по модулю и по направлению (a = const).

Равнопеременное движение может быть равноускоренным или равнозамедленным.

Равноускоренное движение – это движение тела (материальной точки) с положительным ускорением, то есть при таком движении тело разгоняется с неизменным ускорением. В случае равноускоренного движения модуль скорости тела с течением времени возрастает, направление ускорения совпадает с направлением скорости движения.

Равнозамедленное движение – это движение тела (материальной точки) с отрицательным ускорением, то есть при таком движении тело равномерно замедляется. При равнозамедленном движении векторы скорости и ускорения противоположны, а модуль скорости с течением времени уменьшается.

В механике любое прямолинейное движение является ускоренным, поэтому замедленное движение отличается от ускоренного лишь знаком проекции вектора ускорения на выбранную ось системы координат.

Средняя скорость переменного движения определяется путём деления перемещения тела на время, в течение которого это перемещение было совершено. Единица измерения средней скорости – м/с.

V cp = s / t

– это скорость тела (материальной точки) в данный момент времени или в данной точке траектории, то есть предел, к которому стремится средняя скорость при бесконечном уменьшении промежутка времени Δt:

Вектор мгновенной скорости равнопеременного движения можно найти как первую производную от вектора перемещения по времени:

Проекция вектора скорости на ось ОХ:

V x = x’

это производная от координаты по времени (аналогично получают проекции вектора скорости на другие координатные оси).

– это величина, которая определяет быстроту изменения скорости тела, то есть предел, к которому стремится изменение скорости при бесконечном уменьшении промежутка времени Δt:

Вектор ускорения равнопеременного движения можно найти как первую производную от вектора скорости по времени или как вторую производную от вектора перемещения по времени:

Если тело движется прямолинейно вдоль оси ОХ прямолинейной декартовой системы координат, совпадающей по направлению с траекторией тела, то проекция вектора скорости на эту ось определяется формулой:

V x = v 0x ± a x t

Знак «-» (минус) перед проекцией вектора ускорения относится к равнозамедленному движению. Аналогично записываются уравнения проекций вектора скорости на другие оси координат.

Так как при равнопеременном движении ускорение является постоянным (a = const), то график ускорения – это прямая, параллельная оси 0t (оси времени, рис. 1.15).

Рис. 1.15. Зависимость ускорения тела от времени.

Зависимость скорости от времени – это линейная функция, графиком которой является прямая линия (рис. 1.16).

Рис. 1.16. Зависимость скорости тела от времени.

График зависимости скорости от времени (рис. 1.16) показывает, что

При этом перемещение численно равно площади фигуры 0abc (рис. 1.16).

Площадь трапеции равна произведению полусуммы длин её оснований на высоту. Основания трапеции 0abc численно равны:

0a = v 0 bc = v

Высота трапеции равна t. Таким образом, площадь трапеции, а значит, и проекция перемещения на ось ОХ равна:

В случае равнозамедленного движения проекция ускорения отрицательна и в формуле для проекции перемещения перед ускорением ставится знак «–» (минус).

График зависимости скорости тела от времени при различных ускорениях показан на рис. 1.17. График зависимости перемещения от времени при v0 = 0 показан на рис. 1.18.

Рис. 1.17. Зависимость скорости тела от времени для различных значений ускорения.

Рис. 1.18. Зависимость перемещения тела от времени.

Скорость тела в данный момент времени t 1 равна тангенсу угла наклона между касательной к графику и осью времени v = tg α, а перемещение определяют по формуле:

Если время движения тела неизвестно, можно использовать другую формулу перемещения, решая систему из двух уравнений:

Поможет нам вывести формулу для проекции перемещения:

Так как координата тела в любой момент времени определяется суммой начальной координаты и проекции перемещения, то будет выглядеть следующим образом:

Графиком координаты x(t) также является парабола (как и график перемещения), но вершина параболы в общем случае не совпадает с началом координат. При а x < 0 и х 0 = 0 ветви параболы направлены вниз (рис. 1.18).

Траектория - это линия, которую тело описывает при движении.

Траектория пчелы

Путь - это длина траектории. То есть длина той, возможно, кривой линии, по которой двигалось тело. Путь скалярная величина ! Перемещение - векторная величина ! Это вектор, который проведен из начальной точки отправления тела в конечную точку. Имеет численное значение, равное длине вектора. Путь и перемещение - это существенно разные физические величины.

Обозначения пути и перемещения вы можете встретить разное:

Сумма перемещений

Пусть в течение промежутка времени t 1 тело совершило перемещение s 1 , а в течение следующего промежутка времени t 2 - перемещение s 2 . Тогда за все время движения перемещение s 3 - это векторная сумма

Равномерное движение

Движение с постоянной по модулю и по направлению скоростью. Что это значит? Рассмотрим движение машины. Если она едет по прямой линии, на спидометре одно и то же значение скорости (модуль скорости), то это движение равномерное. Стоит машине изменить направление (повернуть), это будет означать, что вектор скорости изменил свое направление. Вектор скорости направлен туда же, куда едет машина. Такое движение нельзя считать равномерным, несмотря на то, что спидометр показывает одно и то же число.

Направление вектора скорости всегда совпадает с направлением движения тела

Можно ли движение на карусели считать равномерным (если не происходит ускорение или торможение)? Нельзя, постоянно изменяется направление движения, а значит и вектор скорости. Из рассуждений можно сделать вывод, что равномерное движение - это всегда движение по прямой линии! А значит при равномерном движении путь и перемещение одинаковы (поясни почему).

Нетрудно представить, что при равномерном движении за любые равные промежутки времени тело будет перемещаться на одинаковое расстояние.